

Beyond Vanilla Electroweak Baryogenesis

Graham White

with Sebastian Ellis, Seyda Ipek, David Morrissey, Michael Ramsey-Musolf, Peter Winslow,

Literal answer

- Main: why is there more matter than anti matter
- Big bang nucleosynthesis: *low energy injection.*
- Gravitational waves: Lisa inverse problem
- Dark matter: non standard thermal history

Literal answer

- Main: why is there more matter than anti matter
- Big bang nucleosynthesis: *low energy injection.*
- Gravitational waves: Lisa inverse problem
- Dark matter: non standard thermal history

Literal answer

Outline

- Review of Electroweak baryogenesis
- Experimental status of vanilla framework
- How to organize extensions to the vanilla framework
- An example of each type of extension
- Summary

Baryon yield can be measured 2 ways

Inflation washes out initial baryon asymmetry

Sakharov conditions

B violation C and CP violation Departure from Equilibrium

Electroweak baryogenesis

B Violation - Electroweak Sphalerons CP Violation - CPV interactions with (preferably) Higgs Departure from equilibrium - EWPT

- most minimal model (if parameters were different would Require no BSM particles!)

Electroweak Phase Transition:

Electroweak Baryogenesis

Chupp:1710:02504

Electroweak Baryogenesis

Morrissey 1206.2942

Calculation of baryon asymmetry proceeds in 3 steps

Bubble wall profile Charged transport and baryon production Low energy constraints - in particular EDMs!

Phase transition calculation

$$\frac{\partial V}{\partial \phi} = 0 \bigg|_{T=T_c}, \quad V(\phi_c, T_c) = V(0, T_c)$$

$$\frac{\partial^2 \phi_B}{\partial r^2} + \frac{2}{r} \frac{\partial \phi_B}{\partial r} = \frac{dV}{d\phi} \bigg|_{\phi_B}, \quad \phi_B \approx \frac{\phi_c}{2} \left(1 - \tanh \theta_B\right)$$

$$S_E = 4\pi \int dr^2 L(\phi_B), \quad \frac{S_E}{T} \approx 140$$

Transport is done in two steps:

Calculation of a chiral asymmetry (hard part)
Calculation of the baron asymmetry (easy part)

$$D_{q}\rho_{B}''(z) - v_{w}\rho_{B}' - \Theta[-z]\frac{15}{4}\Gamma_{ws}\rho_{B} = \Theta[-z]\frac{3}{2}$$

 $\Gamma_{ws}n_L(z)$

Cartoon of thermal field theory

Four types of 2 point correlators

 G^{++}, G^{+-}, G^{-+} and G^{--}

Cartoon of calculation

$G = G_0 + \Delta G$

- $\mathscr{E}(x)G_{ij}^{+-}(x,y) G_{ij}^{+-}(x,y)\mathscr{E}(y) = \mathscr{E}(x)\Delta G_{ij}^{+-}(x,y) \Delta G_{ij}^{+-}(x,y)\mathscr{E}(y)$
- "Semi Classical force" <-> LHS, Self-energies <-> RHS
- **VEV insertion approach:**
- 1. ignore off diagonals
- 2. Expand around x=y
- 3. Use electroweak symmetric basis

$f^{+-}(x, y) - \Delta G_{ij}^{+-}(x, y) \mathscr{E}(y)$ Space time varying basis!

Vev insertion in words:

Majority of the baryon asymmetry is produced just outside the bubble where the vevs are small compared to the mass splitting and temperature

Vev insertion sources

$$\partial_{\mu}J^{\mu} = \lim_{y=x} \int d^{4}z G^{+-}(x,z)\Sigma^{--}$$

 $^{+}(z, y) + \cdots$

Resonant behaviour of sources

Lee, hep-ph/0412354

20

Transport equation for determining chiral asymmetry - Top quark example

$$v_w n'_t - D_Q n''_t = -\Gamma_m \left(\frac{n_t}{k_t} - \frac{n_Q}{k_Q}\right) - \Gamma_Y \left(\frac{n_t}{k_t} - \frac{n_H}{k_H} - \frac{n_Q}{k_Q}\right) + \Gamma_{ss} \left(\frac{2n_Q}{k_Q} - \frac{n_t}{k_t} + \frac{9(n_Q + n_t)}{k_B}\right) + S_t^{CPV}$$

Strong sphaleron rate Diffusion rate Scattering/Decay rate CP conserving interactions with bubble wall CPV interations with bubble wall

 \times

- Experimental status of EWBG in SM
- **B** violation
- **CP** violation
- **Departure from Equilibrium** \times

BSM and Vanilla baryogenesis

MSSM - Light stop + EDMs NMSSM - $\tilde{S}\tilde{H}H$ still promising SMEFT - $H^3\bar{\tau}\tau$ still promising Motivation to look beyond minimal scenario

23

Extending Electroweak Baryogenesis

Extensions to minimal scenario based around Sakharov conditions

Change how efficiently B is violated
Change what sort of CP violating sources one uses
Change the way a departure from equilibrium is achieved

24

Scaling of tree level CPV sources v scaling of EDMS

$$\partial_{\mu}J^{\mu} = \lim_{y=x} \int d^{4}z G^{+-}(x,z)\Sigma^{-+}(x,z) \Sigma^{-+}(x,z) \Sigma^{-+}(x,z)$$

 $\exp[-\Lambda_{\rm CPV}/T] \leftrightarrow \frac{1}{\Lambda_{\rm CPV}^N}$

а

$(z, y) + \cdots$

25

Why the Boltzmann supression?

$$G^{\pm\pm} = \approx \pm \frac{1}{M^2} + \mathcal{O} \exp[-M/T]$$
$$G^{\pm\mp} = \approx \mathcal{O} \exp[-M/T]$$

Recall master equation for deriving CPV sources

$$\partial_{\mu}J^{\mu} = \lim_{y=x} \int d^{4}z G^{+-}(x,z)\Sigma^{-+}(z,y) +$$

. . .

26

Why the Boltzmann supression?

$$G^{\pm\pm} = \approx \pm \frac{1}{M^2} + \mathcal{O} \exp[-M/T]$$
$$G^{\pm\mp} = \approx \mathcal{O} \exp[-M/T]$$

Recall master equation for deriving CPV sources

$$\partial_{\mu}J^{\mu} = \lim_{y=x} \int d^{4}z G^{+-}(x,z)\Sigma^{-+}(z,y) +$$

Solution: tree level interfering with loop

• • •

27

A simple example

$$-\mathscr{L} \ni m_A^2 |A|^2 + m_B^2 |B|^2 + \left[\mu + \frac{\xi |H|^2}{\Lambda}\right]$$

Quantum numbers

$$A = (1,2,1/2)$$
 $B = (1,1,0)$

 $A^{\dagger}HB + (\kappa |A|^2 + \kappa_B |B|^2) |H|^2 + h \cdot c \cdot + S \cdot B \cdot Ts$

28

Source estimation: tree level

$$-\mathcal{L} \ni A^{\dagger} \left[\mu_1 H_1 + \mu_2 H_2 \right] B$$

~ Im[$\mu_1 \mu_2$] $\beta'(x)v(x)^2 I(m_i, \Gamma_i)$

$$10^2 \lesssim \text{Max} \left[\frac{Y_B}{Y_B^{\text{obs}}}\right] \lesssim 10^3$$

Source estimation: loop

$$-\mathscr{L} \ni \left[\mu + \frac{\xi |H|^2}{\Lambda} \right] A^{\dagger} HB$$

~ Im[
$$\mu\xi$$
] $\frac{v(x)^2}{\Lambda}v(x)v'(x)I(m_i,\Gamma_i)$

For $\mu \sim 200 \text{ GeV}$ Max[Λ] ~ $\mathcal{O}[1 - 10]$ PeV

μ

30

Electroweak precision

31

- Chiral asymmetry generated by CPV interactions with bubble wall - Weak sphalerons convert chiral asymmetry to B asymmetry
- $\Gamma_{ws} = 120 \alpha_w^5 T$ controls efficiency of B violation $\Gamma_{ss} = 140 \alpha_s^5 T$ controls efficiency of chiral washout

32

Case 1: Modifying couplings through a PT

$$\mathscr{L} \supset -\frac{1}{4} \left(\frac{1}{g_3^2} + a_{\phi} \frac{\phi}{\Lambda_{\phi}} \right) G^{a \ \mu\nu} G^{a}_{\mu}$$

UV completion: 1. triangle diagram 2. Dilaton-like field

Case 2: oscillating dilaton $\alpha_w \to \alpha_w(T)$

$$\delta L = -\frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} A_{\mu\nu} - \frac{1}{4} \left(1 - \frac{d_{gY}}{g_Y^2} \kappa \phi \right) A^{\mu\nu} A_{\mu\nu} A_{\mu$$

$$\phi \approx \frac{\sqrt{2f_{DM}\rho_{DM}}}{m_{\phi}} \cos(m_{\phi}(t - v \cdot x + \cdots) \propto \left(\frac{1}{m_{\phi}}\right)$$

Planck Suppressed coupling Can be large in the early universe

 $-\frac{d_{g2}}{g_2^2}\kappa\phi\right)W^{a\mu\nu}W^a_{\mu\nu}$ $\sqrt{3/2}$ $\left(\frac{T}{T_{CMB}}\right)^{-1}$

34

Experimental tests

- Variation in α for 1<z<4
- BBN
- E.P.V searches
- 5th force searches (future work)

First three tests are actually sensitive t

Tuning/Symmetry imposes

If a tuning that is broken by running it needs to hold reasonably well between z=4 and BBN

to
$$d_e = \alpha_Y d_{g_2} + \alpha_2 d_{g_Y}$$

$$\frac{d_{g_2}}{d_{g_Y}} = -\frac{\alpha_2}{\alpha_y}$$

35

 $\frac{d_{g2}\sqrt{f_{DM}}}{2.5 \times 10^6 m_{\rm pl}^{1/4} - d_{g2}\sqrt{f_{DM}}}$ $\delta \alpha_2 \approx \alpha_2$

36

Baryon asymmetry dependence on constants

37

Baryon asymmetry dependence on constants

38

Approach 3: Departure from equilibrium

Heat up Rochelle salt and crystallization increases

Heat further again and the salt will melt

39

Approach 3: Departure from equilibrium

SU(3)xSU(2)

Τ

SU(3)xSU(2)

SU(3)xSU(2)

SU(3)xSU(2)

SU(3)xSU(2)

SU(3)xSU(2)

SU(3)xSU(2)

40

Lagrangian and model for COB

$$L = L_{\rm SM} + \lambda_i C_i \bar{b}_R L + \Delta V$$
$$C_i = (3, 2, 1/6)$$

→ Spontaneous and Sphalerons $\langle B \rangle$

 $\mathcal{L}^{\mathcal{P}} \leftrightarrow \lambda_i$ Restrict to 3rd generation **Departure from Equilibrium – Colour breaking phase. Can happen at multi TeV scale**

Approach 3: Departure from equilibrium

Approach 3: Departure from equilibrium

42

Approach 3: Departure from equilibrium

Experimental constraints

(a)

Experimental signal: flavour anomalies, Gravitational waves, neutron EDM, leptoquark production at upgraded LHC?

(b)

43

Summary

While vanilla EWBG is still alive

- **EDMs motivate extensions to vanilla EWBG**
- **Extensions are quite rich and still testable**
- **Can be organized around Sakharov conditions:**

 - history

1. Modify B violation – Temperature dependent gauge constants 2. Modify CP violation – Tree level interfering with loop

3. Modify Departure from Eq - Richer phase

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

