

Dark Matter Indirect Detection With Sub-GeV Gamma Rays

Jason Kumar University of Hawaii

colla borators

Dillon Berger

- Kimberly Boddy
- Keith Dienes
- Doojin Kim
- Jong-Chul Park
- Arvind Rajaraman
- Pearl Sandick
- Brooks Thomas
- PRD **92**, 023533 (**20**15), arXiv:1504.04024 KB, JK
- PRD 94, 095027 (2016), arXiv:1606.07440 KB, KD, DK, JK, J-CP, BT
- PRD 95, 055024 (2017), arXiv:1609.09104 KB, KD, DK, JK, J-CP, BT
- PRD 98, 116009 (2018), arXiv:1808.02579 JK
- arXiv:190x.xxxxx DB, JK, AR
- arXiv:19xx.xxxx JK, PS

Sub-GeV DM and photons

- good time to think about indirect detection of sub-GeV dark matter with sub-GeV gamma rays
 - theoretical interest in sub-GeV dark matter (SIMP, ELDER, etc.)
 - avoids tight direct detection limits
 - new observatories planned to improve sensitivity to MeV-GeV range photons (e-ASTROGAM, AMEGO)
- gamma ray signals from sub-GeV DM are especially useful
 - fewer final state particles are kinematically accessible
 - final states constrained by symmetry
 - primary and secondary photon spectra have striking features
- new instruments can make big improvements in sensitivity for annihilating and (especially) decaying dark matter

MeV-Gap

- for E \sim 1-100 MeV, relatively poor sensitivity currently
- aiming for larger effective area, better energy, angular resolution

Chiral Perturbation Theory

- if sub-GeV DM couples to quarks, end up with photons and light mesons
- dominant interaction is QCD
- weak interactions suppressed by m_{z,w}
- final states constrained by symmetries of massless QCD
 - C, P, strangeness, isospin
- π^0 , $\eta \rightarrow \gamma \gamma$ become the most important secondary photon production channels
- get striking signals ... "lines and boxes"

Wikipedia

gameplan

- look at diffuse and dSph searches for DM annihilation and decay, using future instruments
- find major improvements over current bounds
- competitive with Planck for annihilation, but much better for decay
- focus here on two simple scenarios
 - $E_{cm} < 2m_{\pi^{\pm}} \rightarrow look$ for photon line and $\pi^0 \rightarrow \gamma \gamma$
 - $E_{cm} \leq GeV \rightarrow look \text{ for } \eta \rightarrow \gamma \gamma$

- next step is a more comprehensive study of all channels for $E_{cm} \lesssim GeV$
- going backwards from a photon spectrum to a dark matter model?

MeV-range detection strategies

- two detection strategies
- choice set by energy range
- Compton scattering
 - dominant for $E \lesssim 30 \; \text{MeV}$
- pair production
 - dominant for $E\gtrsim 30~\text{MeV}$
 - energy resolution gets worse

future instruments

- a few proposals, using both technologies
 - e-ASTROGAM
 - AMEGO
- we'll take the e-ASTROGAM specifications (pair production) as a benchmark
- ε = 0.3 (1σ energy res.)
- exposure = 3000 cm² yr
- angular resolution $\sim 1^{\circ}$
- what can they do?

symmetry and kinematics

- assume dark matter couples to quarks
- basic assumptions about primary annihilation/decay process
 - QCD dominates
 - QED subleading, but may be dominant if purely QCD processes are kinematically forbidden, or forbidden by symmetry
 - weak interactions are negligible (suppressed $sG_F \ll \alpha$)
- so C, P, J, strangeness quantum numbers of initial and final state match (not violated by QED/QCD)
- isospin (I) also approximately a good symmetry, if QED negligible
 - transformation properties of quark current to which dark matter couples determine the transformation properties of final state

final state particles

- care about photons, light pseudoscalar meson octet
- leptons suppressed by extra powers of sG_F or α
- photon sources
 - primary QED
 - secondary $\pi^0 \rightarrow \gamma\gamma$ (~ 99%), $\eta \rightarrow \gamma\gamma$ (~ 39%)
 - tertiary decays of heavier mesons to π^0
- focus on 2- and 3-body final states
- in all cases we consider, at least one of these is accessible

 $E_{cm} < 2m_{\pi\pm}$

- focus on 2-body final states here
- $\gamma\gamma \rightarrow$ C-even
- $\gamma \pi^0 \rightarrow C$ -odd
 - QED suppressed
- $\pi^0\pi^0 \rightarrow C$ -even
 - threshold at $2m_{\pi^0}$
 - P-even, J=I=even
 - dominates if accessible
- can classify final state by C, P, I properties of the quark bilinear to which DM couples
- we'll focus on cases where one of these states is unsuppressed

- - − C: (-1)^L
 - **P**: (-1)^L
- ππ state
 - I = L mod 2 (symmetry of wavefunction)
 - $I = isospin of \pi\pi state$
 - for E > 2m_{π[±]}, get charged pion contributions to isospin multiplets
 - π[±] decays produce few photons, but affects branching fractions
 - can get C-odd states (L=I=1), but no $\pi^0\pi^0$ contribution

couplings and symmetries

- DM decay X (q̄ Γ_q q)
- DM annihilation (X $\Gamma_X X$) ($\overline{q} \Gamma_q q$)
- $\Gamma_q = 1, i\gamma^5, \gamma^{\mu}, \gamma^{\mu}\gamma^5$ (S,P,V,A,... not T)
- only the vector current is C-odd
 - can only get a $\gamma\pi^0$ final state if DM couples to a vector current
 - same form as a π⁰γγ coupling,
 with DM replacing one photon

quark current	С	Р
S	+	+
Р	+	-
V (space)	-	-
A (time)	+	-
A (space)	+	+

replace $A^{\mu} \rightarrow DM$, or DM current

$$\begin{split} O = & \frac{1}{M^2} \Big(\overline{X} \gamma^{\mu} X \Big) \Big(\overline{q} \gamma_{\mu} q \Big) \\ O_{eff.} \sim & \frac{e}{16 \pi^2 f_{\pi} M^2} \Big(\overline{X} \gamma^{\mu} X \Big) F^{\nu \rho} \Big(\partial^{\sigma} \pi^0 \Big) \epsilon_{\mu \nu \rho \sigma} \end{split}$$

photon spectra

- each channel gives a distinctive spectrum
- two-body final state
 - directly produced photons are monoenergetic
- π⁰ decay produces two monoenergetic γs in CM frame
 - boosting gives a "box" spectrum
- since s < $(2m_{\pi\pm})^2$, pion not very boosted
 - box may not be very wide
 - $-\Delta E < 107 \text{ MeV} (\gamma \pi^0)$
 - ΔE < 36 MeV ($\pi^0 \pi^0$)

• $\gamma \gamma \rightarrow \text{line}$ $E_{\text{line}} = \sqrt{s/2}$

• $\gamma \pi^0 \rightarrow$ line plus box

$$\begin{split} E_{line} = & \left(\sqrt{s} / 2 \right) \! \left(1 - m_{\pi^0}^2 / s \right) \\ E_{\pm} = & \left(\sqrt{s} / 4 \right) \! \left[\left(1 + m_{\pi^0}^2 / s \right) \! \pm \! \left(1 - m_{\pi^0}^2 / s \right) \right] \end{split}$$

•
$$\pi^0 \pi^0 \rightarrow box$$

 $E_{\pm} = \left(\sqrt{s}/4\right) \left(1 \pm \sqrt{1 - 4m_{\pi^0}^2/s}\right)$

 $E_{cm} > 2m_{\pi \pm}$

- 2- or 3-meson states typically accessible
- drop QED
- use SU(3) chiral Lagrangian, O(p²)
- introduce pseudoscalar meson octet (Φ)
- fields transform under SU(3)_L × SU(3)_R chiral symmetry
- DM-quark coupling introduced as a spurion whose vev breaks chiral symmetry (s, p, v, a)
- coefficient of coupling derived from data, using SM spurions $(B = m_{\pi}^2/(m_u + m_d))$

$$\mathcal{L} = \frac{F^2}{4} Tr \left[D_{\mu} U D^{\mu} U^{\dagger} + \chi U^{\dagger} + U \chi^{\dagger} \right]$$

spurions

- spurion couples to quark current in fundamental Lagrangian
 - breaks flavor symmetries
- also appears in the chiral Lagrangian parameterizing flavor breaking
- coefficients relate symmetry breaking parameters in fundamental Lagrangian (like quark mass) to those in chiral Lagrangian (like meson mass)
- sets coefficients for s, p, v, a
- flavor structure of DM spurion determines final state

 $m_u + \alpha_u \frac{XX}{\Lambda^2}$ $m_d + \alpha_d - \frac{1}{\Lambda^2}$ 0 $\mathbf{S} =$ \mathbf{O} 0 $m_s + \alpha$ or $\mathbf{s} = \begin{bmatrix} \mathbf{m}_{u} + \alpha_{u} \phi & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_{d} + \alpha_{d} \phi & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{m}_{s} + \alpha_{s} \phi \end{bmatrix}$

final states of interest

- focus on $E_{cm} \lesssim 1 \text{ GeV}$
 - simplifies accessible states
- conservation of strangeness \rightarrow kaons only come in pairs
 - not accessible
 - can mostly simplify to SU(2) chiral Lagrangian
- only get pions (m $_{\pi} \sim 140$ MeV) and at most one η (m $_{\eta} \sim 548$ MeV)
- only relevant final states are $\pi\pi$, $\pi^0\eta$, $\pi\pi\eta$, and $\pi\pi\pi$
- π[±] decay doesn't contribute photons
- photons from $\pi^0 \rightarrow \gamma \gamma$ less energetic than from $\eta \rightarrow \gamma \gamma$
 - background drops rapidly with energy
- we'll focus on photons produced by $\eta \rightarrow \gamma \gamma$
- care about $\pi^0\eta$, $\pi\pi\eta$ for now

connecting the quark current to the final state

- properties of chiral Lagrangian at $\mathcal{O}(p^2)$
 - s, v spurions couple to even number of mesons
 - p, a spurions couple to odd number of mesons
 - s, p spurions couple to terms with no derivatives acting on mesons
 - a, v couple to terms with one derivative acting on mesons
 - if I=0, can partially integrate the derivative
 - acts on spurion, not meson (L=0)

- symmetry of final states
- $\pi^0\eta \rightarrow C=even, s spurion$
 - I=1, I₃=0
 - P: (-1)^J
 - J^{PC} = **O**⁺⁺ (s)
- $\pi\pi\eta \rightarrow p$ or a spurion \rightarrow C=even
 - $I=L_{\pi} \mod 2$, $I_{3}=0$
 - C: (-1) L_{π} , P: (-1) $L_{\pi+L_{\eta+1}}$
 - $| L_{\pi} L_{\eta} | < J < L_{\pi} + L_{\eta}$
 - C=even \rightarrow L_{π} , I=0 \rightarrow L_{η} =0
 - $J^{PC} = 0^{-+} (p,a^0)$
 - matrix element independent of meson momenta

boosting the photons

- we basically have $\eta \rightarrow \gamma \gamma$, where the η is **boosted**
- in η rest frame, $E_{\gamma} = m_{\eta}/2$
- if we boost η by β, then we get a box again
- for $\pi^0\eta$, η is monoenergetic, so photon spectrum is a box of fixed width
- for ππη, η has some injection spectrum dN_η / dE_η
 - sum over boxes to get photon spectrum

photon spectra

- $\pi^0\eta$ case straightforward
 - get a box
- ππη case → integrate three-body phase space over pion momenta to get η injection spectrum
 - looks like a bump
 - vanishes at zero boost, and at maximum boost β_{max}
- plug in to get photon spectrum
 - also looks like a bump
 - peaked at $E_*=m_\eta/2 \sim 274 \text{ MeV}$
 - goes to zero at (m_η/2)[γ_{max}(1±β_{max})]

bump not very wide, compared to 30% energy resolution, even at upper end of E_{cm} range....

constraining models

- given Lorentz, flavor structure of quark current, we have a dominant final state
- from that, got photon spectra
- convolve with energy resolution
- now, estimate constraints from....
 - diffuse emission search
 - dwarf spheroidal search
- start with fit to observed spectrum in EGRET/COMPTEL data (~ 0.00274 [E/MeV]⁻² cm⁻² s⁻¹ sr⁻¹ MeV⁻¹)
- choose an energy bin near the peak of signal

• diffuse search

- assume you don't know bgd.
- can only constrain models which predict a signal larger than observed flux, up to fluctuations
- limit depends only on ε if narrow peak
- dSph (Draco)
 - assume observed diffuse spec. is the bgd to emission from dSph
 - constrain models which predict a signal larger than the fluctuation of bgd.
 - depends on ε , exposure, PSF

sensitivity -- $E_{cm} < 2m_{\pi^{\pm}}$

- all at 2σ , branching fraction = 100%, exposure = 2500 cm² yr (5yrs)
 - conservative diffuse search \rightarrow signal (- 2σ) = observed
 - optimistic diffuse search \rightarrow signal (- 2σ) = 15% of observed
 - ends of solid region
 - dwarf search \rightarrow signal = 2σ of bgd. (diffuse)
 - cross-hatched region, for Draco
 - width → uncertainty in J (1E19.05+0.22-0.21 GeV⁻² cm⁻⁵, for ann.)

lifetime (s)

upshot

- bounds on annihilation compete with Planck, but bounds on decay are a couple of orders of magnitude stronger than Planck (~ 10²⁴s)
 - early Universe = higher number density \rightarrow favors annihilation
 - Planck bounds for s-wave only, but $\pi^0\eta$ comes from a p-wave process
- diffuse bounds compare signal flux (integrated over a bin) to observed flux
 - don't really benefit from statistics
 - once energy bin comparable to signal width, instrument doesn't matter, if diffuse flux fixed
 - but new instruments with better angular resolution and exposure may identify more point sources, and masking them would reduce the diffuse flux
 - not accounted for here
- dSph search beats diffuse, but especially for dark matter annihilation
 - not included stacking of dSphs

vector coupling

- say dark matter couples to a vector current, $E_{cm} \lesssim 1 \text{ GeV}$
 - need a two-body final state with $J^{PC} = 1^{--}$
 - − C-odd $\rightarrow \pi^+\pi^-$ (L=I=1)
 - negligible photon production
- need to consider higher energy,
 O(p⁴) in ChPT, or 4-body
- at higher energy, can produce kaon pairs, which decay to π⁰
- also need to consider vector mesons (ρ, ω)
- new terms in chiral Lagrangian (Terschlusen, Leupold, Lutz- 1204,4125)

 again, new couplings fixed by meson decay data

constraints

DB, JK, AR

- start above pπ threshold (~910 MeV), up to roughly ~1.15 GeV
- accessible states allowed by symmetry $\rightarrow \pi^+\pi^-, K^+K^-, K_LK_S, \rho\pi, \omega\pi^0$
 - all L=1 (C-odd)
 - constrained by isospin, U-, V-spin
- few primary or secondary photons
- tertiary photons come from decay of K^{\pm} , K_L , K_S , ω , ρ^{\pm} to π^0
- can go to higher mass, but will start getting more mesons, glueballs

 $\alpha_u = \alpha_d$

spectrum to a model?

- interesting features of photon spectrum arising from decay of boosted φ → γγ
 - log-symmetric about $E_{\gamma} = m_{\phi}/2$
 - global maximum at $E_{\gamma}=m_{\phi}/2$
 - decreases monotonically going away from maximum
- shape of peak at $E_{\gamma}=m_{\phi}/2$ set by the ϕ injection spectrum at peak
 - sharp peak → finite injection
 spectrum at zero boost
 - smooth peak → inj. spectrum goes to zero at zero boost
 - − plateau \rightarrow boost threshold

scenarios

- two-body final state → plateau
- multi-body final state → smooth peak
- particle production near threshold \rightarrow sharp peak
 - multi-component dark matter (for example, Dynamical Dark Matter, 1606.07440, 1609.09104)
 - many DM components, with non-trivial contribution from components just above threshold
- can we distinguish these scenarios from data?

- basically a question of exposure and energy resolution
- signal peaked near $m_{\pi 0}/2 \sim 70$ MeV, $m_n/2 \sim 275$ MeV

conclusion

- sub-GeV gamma rays a promising tool for dark matter indirect detection
- new interest in theoretical models in this mass range
- region of parameter space not well-constrained by other tools
- new gamma-ray instruments planned
- if DM couples to quarks, final states constrained by kinematics and symmetry

- get striking photon signatures
- can improve sensitivity by orders of magnitude

Back-up slides

analysis details

- energy bin choice
 - if monoenergetic γ is present, bin is centered at that energy
 - if box generated by π^0 decay is present, upper edge of window is at upper edge of box
 - for η channels, just center box at $m_{\eta}/2$
- J-factors
 - diffuse (PPPC 4 DM ID)
 - J_{ann} = 3.5E21 GeV² cm⁻⁵ sr⁻¹
 - J_{dec} = 1.5E22 GeV cm⁻² sr⁻¹
 - Draco (Geringer-Sameth, Koushiappas, Walker 1408.0002) (1.3° cone)
 - J_{ann} = 6.94E21 GeV² cm⁻⁵ sr⁻¹
 - J_{dec} = 5.77E22 GeV cm⁻² sr⁻¹

direct detection constraints

- no constraints if quark current couples to single DM particle, as in case of dark matter decay
- if quark current couples, no bounds for m_{χ} < 350 MeV or so (where CRESST kicks in $\rightarrow \sigma_{N} \sim$ 10-100 pb).
- for m_x > 350 MeV, no bounds for p or a spurion case, since cross section is SD (p and a) and velocity-suppressed (p)
- for scalar spurion, SI-scattering, p-wave suppressed annihilation
 - getting annihilation to Planck limit means ramping couplings, so $\sigma_{SI} \simeq 10^7$ pb
 - but isospin-violating, so detection suppressed by 10⁵ (1307.1758)
 - at Planck limit, near boundary of CRESST search... needs more study
- vector spurion case \rightarrow need coupling to up and down quarks
 - still preliminary, but annihilation is s-wave, so at Planck limit, couplings smaller
 - but CRESST limits improve by 3 orders of magnitude, and coupling need not be IVDM... so some scenarios will be constrained
 - evade direct detection limits entirely if DM couples to strange quarks only....

LHC constraints

- can look at constraints from mono-jet searches
- again, no useful constraints for DM decay case (single DM particle couples to quark current)
 - very weak bounds on coupling
- for case where DM current couples to quark current, naïve LHC bounds in contact approximation will rule out models which saturate Planck
- but can scale α and Λ down while keeping operator coefficient fixed, and LHC sensitivity goes away