

Consequences of Fine-Tuning for Fifth-Force Searches

Sebastian A. R. Ellis SLAC National Accelerator Laboratory

Based on: 1807.11508

N Blinov, SE, A Hook

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Outline

Introduction

I. Why light bosons?

Light scalars and long-range forces

II. Natural, fine-tuned, or naturally fine-tuned?

III. Screening & beyond

Implications for experimental searches

IV. Constraints

V. Quartic self-interactions

VI. Higher-dimensional self-interactions

VII. Cubic self-interactions

Summary

Introduction

Why light bosons?

- Light scalars:
 - Extra dimensions/modifications of Gravity
 - Broken scale invariance: Dilaton
 - Ultralight bosonic Dark Matter
 - Quintessence
- Light vectors:
 - Ultralight dark photon Dark Matter (Not discussed further)

A light scalar with coupling to matter

$$\mathcal{L} \supset \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - y \phi \bar{\psi} \psi$$

Sources a potential of the form

$$V_{\phi}(r) = -\frac{y^2}{4\pi} \frac{e^{-mr}}{r}$$

A light scalar with coupling to matter

$$\mathcal{L} \supset \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - y \phi \bar{\psi} \psi$$

Sources a potential of the form

$$V_{\phi}(r) = -\frac{y^2}{4\pi} \frac{e^{-mr}}{r}$$

Recall gravitational potential:

$$V_G(r) = -\frac{G_N M_i M_j}{r}$$

Scalar leads to modifications of inverse-square law over distances

$$\lambda = 1/m$$

Modified potential is

$$V(r) = -\frac{G_N M_i M_j}{r} \left(1 + \alpha e^{-mr}\right)$$

So that the modified force is

$$F(r) = \frac{G_N M_i M_j}{r^2} \left(1 + \alpha \left(1 + mr \right) e^{-mr} \right)$$
$$\alpha = \frac{y^2}{4\pi} \frac{M_{\rm pl}^2}{m_{\psi}^2}, \quad \beta = \frac{\sqrt{4\pi\alpha}}{M_{\rm pl}}$$

Many efforts since the 1970s to constrain $\{\alpha, m\}$

6

I. Fine-tuned, natural, or natural & fine-tuned?

Small mass \implies hierarchy problem \implies fine-tuning

Coupling to matter induces radiative corrections to scalar potential

$$\begin{array}{c} & \phi \\ & \ddots \\ & &$$

Coleman & E. Weinberg (1973)

Correction to mass \implies fine-tuned

Dilaton: pNGB associated with broken scale invariance

Non-derivative self-interactions only generated proportional to explicit breaking parameter

$$V \simeq \frac{1}{2}m^2\varphi^2 + \frac{am^2}{f}\varphi^3 + \frac{bm^2}{f^2}\varphi^4 + \dots$$

breaking by $\mathcal{O} \sim \varphi^4(\varphi/f)^{\Delta-4}$, $|\Delta-4| \ll 1$

$$a = 5/6$$
 $b = 11/24$

Therefore all parameters naturally small

See e.g. Rattazzi & Zaffaroni (2000) Goldberger, Grinstein, Skiba (2007) Chacko & Mishra (2012) Coradeschi et al (2013)

For

 Z_N scalars: Z_N symmetry non-linearly realised on scalar as a shift symmetry and an exchange symmetry on N copies of particles.

Spurion ε breaks shift symmetry

$$\varphi \to \varphi + \theta \implies \varphi \to \varphi + 2\pi f$$

Scalar only appears as $\varepsilon \sin\left(\frac{\varphi}{f} + \vartheta\right)$

Hook (2018)

$$\mathcal{L} \sim \sum_{k}^{N} \varepsilon \sin\left(\frac{\varphi}{f} + \frac{2\pi k}{N}\right) \bar{\psi}_{k} \psi_{k} + \left(\frac{\varepsilon}{m_{\psi}}\right)^{N} m_{\psi}^{4} \cos\frac{N\varphi}{f}$$

Self-interactions suppressed by ε^N and naturally small

Allow only fine-tuning of the mass, but natural potential otherwise

$$V(\varphi) = \frac{1}{2}m^2\varphi^2 + \frac{1}{3}\kappa\varphi^3 + \frac{1}{4}\epsilon\varphi^4 + y\varphi\bar{\psi}\psi$$

Tuned Natural

Couplings at 1-loop: $\kappa(\mu) \simeq \kappa(\mu_0) + \frac{3y^3}{2\pi^2} m_{\psi} \ln \frac{\mu}{\mu_0} \implies |\kappa| \gtrsim \frac{3y^3}{2\pi^2} m_{\psi}$ $\epsilon(\mu) \simeq \epsilon(\mu_0) - \frac{y^4}{2\pi^2} \ln \frac{\mu}{\mu_0} \implies |\epsilon| \gtrsim \frac{y^4}{2\pi^2}$

Alternatively consider Coleman-Weinberg potential

$$V_{CW} = -\frac{1}{16\pi^2} m_{\psi}(\varphi)^4 \left(\ln \frac{m_{\psi}(\varphi)^2}{\mu^2} - \frac{3}{2} \right)$$

Nith $m_{\psi}(\varphi) = m_{\psi} - y\varphi$

Then characteristic self-interaction of $\mathcal{O}(\varphi^n)$

$$g_{(n)} \sim \frac{y^n m_{\psi}^{4-n}}{16\pi^2}$$

Non-renormalisable operators generated as well

III. Screening

Linear coupling to matter shifts vacuum inside dense object

See e.g. Khoury & Weltman (2003) Gubser & Khoury (2004) Feldman & Nelson (2006) Mota & Shaw (2006, 2006) See also Burrage & Sakstein (2017)

Include natural self-interactions:

Sebastian A. R. Ellis – Fine-Tuning and Flfth-Forces

Effective mass larger than bare mass

 $m_{
m eff} > m ~~\Leftrightarrow~~\lambda_{
m eff} < \lambda$ Screening condition: $m_{
m eff}R > 1$

Two ways of thinking about screening:

Effective range smaller than radius, so only a shell sources the field

Field has reached its in-medium minimum, and so ceases to change

EoM for scalar determines field profile, and therefore strength of force:

$$\varphi'' + \frac{2}{r}\varphi' = V'(\varphi) - \beta\rho\,\theta(r-R),$$

In the screened regime, highly non-linear

Field profile approximately

$$\varphi \sim \frac{Q}{r}, \quad Q = \beta M \gamma \qquad \qquad \text{Screening} \\ \text{Parameter} \end{cases}$$

Estimate size of screening parameter at r ~ R:

$$\varphi'' + \frac{2}{r}\varphi' \sim \frac{2Q}{r^3} \approx g\varphi^{n-1} \sim g\frac{Q^{n-1}}{r^{n-1}}$$
$$\implies \gamma \sim \left(\frac{g_c}{g}\right)^{1/(n-2)}, \quad g_c = \frac{2R^{n-4}}{(\beta M)^{n-2}}$$

Notice screening parameter dependent on:

Strength of coupling to matter:
$$\beta = \frac{y}{m_\psi} = \frac{\sqrt{4\pi\alpha}}{M_{\rm pl}}$$

Geometry of object: M, R

Screening from natural potential

When self-interactions dominate:

$$m_{\text{eff}}^2 \sim \beta^{2n-2} m_{\psi}^4 \left(\rho_i R_i^2\right)^{n-2}$$

$$\beta = \frac{y}{m_{\psi}} = \frac{\sqrt{4\pi\alpha}}{M_{\rm pl}}$$

Recall α is strength relative to gravity

Screening condition translates into a critical α :

$$\alpha_c^{(n)} \sim \frac{M_{\rm pl}^2}{R^2 \left(m_{\psi}^4 \rho^{n-2}\right)^{1/(n-1)}}$$

Screening from natural potential

Object	$\alpha_c^{(3)}$	$\alpha_c^{(4)}$	$\alpha_c^{(5)}$
Earth (\oplus)	10^{2}	$10^{4.1}$	10^{5}
$Moon (\mathbb{C})$	$10^{3.2}$	$10^{5.4}$	$10^{6.3}$
Mercury (\mathfrak{P})	$10^{2.8}$	10^{5}	$10^{5.9}$
Mars (d)	$10^{2.6}$	$10^{4.8}$	$10^{5.7}$
LAGEOS (L)	10^{17}	10^{19}	10^{20}
Sun(O)	$10^{-1.8}$	$10^{0.44}$	$10^{1.4}$
Pulsar (P)	$10^{0.48-0.55}$	$10^{0.34-0.35}$	$10^{0.09-0.13}$
Inner Dwarf (D_i)	$10^{-0.53}$	$10^{0.92}$	$10^{1.5}$
Outer Dwarf (D_o)	$10^{-0.64}$	$10^{0.70}$	$10^{1.2}$

Sebastian A. R. Ellis – Fine-Tuning and Flfth-Forces

Quintic

Quartic

Cubic

Consequences

Consider screening condition for cubic selfinteraction, for Earth, Moon and LAGEOS

Equivalence Principle

Consequences

Consider screening condition for cubic selfinteraction, for Earth, Moon and LAGEOS

EP-violation searches can apply

II b. Beyond Screening

Tunneling

Minimum near $\varphi = 0$ can be metastable

Potential with cubic and small stabilising quartic:

23

Enhancements

Minimum near $\varphi = 0$ can be unstable

 φ will rapidly evolve classically towards global minimum

C.f. "Spontaneous scalarisation" Damour & Esposito-Farese (1993)

V. Constraints

Constraints on EP-preserving forces

Anomalous precession

Motion under influence of a central force:

Anomalous precession

Anomalous precession

Constraints:

$$\frac{\delta\omega}{\omega} \simeq \frac{\alpha}{2} (ma_p)^2 e^{-ma_p}$$

$$\begin{split} \frac{\delta\omega}{\omega}\Big|_{L} &= (1.4 \pm 22 \pm 270) \times 10^{-13}, \quad \frac{\delta\omega}{\omega}\Big|_{\mathbb{C}} = (-3.0 \pm 8.0) \times 10^{-12}, \\ & \text{LAGEOS satellite} \Big|_{\substack{\text{Lucchesi & others} \\ (\pm 2014)}} & \text{Moon} \Big|_{\substack{\text{Talmadge et al} \\ \text{Dickey et al (1994)}}} \\ & \frac{\delta\omega}{\omega}\Big|_{\mathfrak{P}} = (-13 \pm 33) \times 10^{-9}, \quad \frac{\delta\omega}{\omega}\Big|_{\mathfrak{S}} = (-21 \pm 29) \times 10^{-9} \\ & \text{Mercury} \Big|_{\substack{\text{Talmadge et al} \\ (1988)}} & \text{Mars} \Big|_{\substack{\text{Talmadge et al} \\ (1988)}} \\ \end{split}$$

Lunar-LAGEOS

Measurements of $\mu_{\oplus}(r) = G_N(r)M_{\oplus}$ at LAGEOS and on lunar surface

$$\eta_{LL} = \frac{\mu_{\oplus}(r_L) - \mu_{\oplus}(r_{\oplus-\mathfrak{C}})}{\left(\mu_{\oplus}(r_L) + \mu_{\oplus}(r_{\oplus-\mathfrak{C}})\right)/2}$$

Constraint:

$$\eta_{LL,\ \mathrm{meas.}} = (-1.8\pm1.6) imes10^{-8}$$
 [Fischbach & Talmadge (1998)

Without a fifth force:

$$\eta_{LL} = 0$$

Lunar-LAGEOS

When a fifth force is present:

$$\eta_{5,LL} = 2\alpha \gamma_{\oplus} \left\{ \frac{\gamma_L \mathbb{G}_{\oplus}(R_L, m) - \gamma_{\mathbb{C}} \mathbb{G}_{\oplus}(R_{\oplus -\mathbb{C}}, m)(R_{\oplus -\mathbb{C}}/R_L)^2}{2\mu_{\oplus}/R_L^2 + \alpha \gamma_{\oplus} (\gamma_L \mathbb{G}_{\oplus}(R_L, m) + \gamma_{\mathbb{C}} \mathbb{G}_{\oplus}(R_{\oplus -\mathbb{C}}, m)(R_{\oplus -\mathbb{C}}/R_L)^2)} \right\}$$

Modified acceleration:

$$\mathbb{G}_{i}(r,m) = G_{N}M_{i}\left(1+mr\right)\left(\frac{e^{-mr}}{r^{2}}\right)F_{i}\left(mR_{i}\right)$$

Form factor: $F_{i}(x) = \frac{3}{x^{3}}\left(x\cosh x - \sinh x\right)$

Lunar-LAGEOS

When a fifth force is present:

$$\eta_{5,LL} = 2\alpha \gamma_{\oplus} \left\{ \frac{\gamma_L \mathbb{G}_{\oplus}(R_L, m) - \gamma_{\mathbb{C}} \mathbb{G}_{\oplus}(R_{\oplus-\mathbb{C}}, m)(R_{\oplus-\mathbb{C}}/R_L)^2}{2\mu_{\oplus}/R_L^2 + \alpha \gamma_{\oplus} (\gamma_L \mathbb{G}_{\oplus}(R_L, m) + \gamma_{\mathbb{C}} \mathbb{G}_{\oplus}(R_{\oplus-\mathbb{C}}, m)(R_{\oplus-\mathbb{C}}/R_L)^2)} \right\}$$

In $m \to 0$ limit: $\eta_{5,LL} \sim \alpha \gamma_{\oplus} (\gamma_{\mathbb{C}} - \gamma_L) + \mathcal{O}(r_i^2 m^2)$

If
$$\gamma_{\mathfrak{C}} - \gamma_L \neq 0$$
, effective EP violation

Earth-LAGEOS

Measurements of $\mu_{\oplus}(r) = G_N(r)M_{\oplus}$ at LAGEOS and on Earth's surface

$$\eta = \frac{g_{\oplus}(R_{\oplus}) - g_L(R_{\oplus})}{g_L(R_{\oplus})}$$

Constraint:
$$\eta = (-2 \pm 5) \times 10^{-7}$$

Fifth force:

$$\eta_{5} = \left(\frac{\alpha \overline{\gamma_{\oplus}}(R_{\oplus}) R_{\oplus}^{2} \mathbb{G}_{\oplus}(R_{\oplus}, m) - \alpha \overline{\gamma_{\oplus}}(R_{L}) \gamma_{L} R_{L}^{2} \mathbb{G}_{\oplus}(R_{L}, m)}{\mu_{\oplus}(R_{L}) + \alpha \overline{\gamma_{\oplus}}(R_{L}) \gamma_{L} R_{L}^{2} \mathbb{G}_{\oplus}(R_{L}, m)}\right)$$

Earth-LAGEOS: a closer look

Fifth force: $\eta_{5} = \left(\frac{\alpha \overline{\gamma_{\oplus}}(R_{\oplus})R_{\oplus}^{2} \mathbb{G}_{\oplus}(R_{\oplus},m) - \alpha \overline{\gamma_{\oplus}}(R_{L})\gamma_{L}R_{L}^{2} \mathbb{G}_{\oplus}(R_{L},m)}{\mu_{\oplus}(R_{L}) + \alpha \overline{\gamma_{\oplus}}(R_{L})\gamma_{L}R_{L}^{2} \mathbb{G}_{\oplus}(R_{L},m)}\right)$

Why
$$\bar{\gamma}_{\oplus}(R_{\oplus})$$
? Measurement done on Earth's surface
 $\alpha \bar{\gamma}_{\oplus}(r) \mathbb{G}_{\oplus}(r,m) = -\beta \varphi'(r)$
 $\varphi'' \sim \epsilon \varphi^3 - \beta \rho \theta(r - R_i) \qquad \varphi'(R_{\oplus}) \sim -2^{1/6} \pi^{1/3} \left(\frac{\rho_{\oplus}}{m_n}\right)^{2/3}$

$$\bar{\gamma}_{\oplus}(R_{\oplus}) \propto lpha^{-1/2}$$

Constraint grows with lpha

Other constraints

EP tests:

• Stellar triple system *PSR J0337+1715*: $\eta = \frac{a_{\rm NS} - a_{\rm WD,I}}{(a_{\rm NS} + a_{\rm WD,I})/2} < 2.6 \times 10^{-6}$ Archibald et al (2018)

Williams et al (2004)

Earth-Moon-Sun system:

$$\eta = \frac{|a_{\oplus} - a_{\mathbb{C}}|}{(a_{\oplus} + a_{\mathbb{C}})/2} < 1.8 \times 10^{-13}$$

General constraints:

 Light deflection (Cassini) $\gamma_{\rm PPN} - 1 \approx -\frac{2\beta\varphi(b_{\rm min})}{\Phi_N(b_{\rm min})} = (2.1 \pm 2.5) \times 10^{-5}$

Bertotti et al (2003)

Cooling of SN1987A:

 $\alpha \lesssim 10^{17}$

Cooling of HB and RG stars: $\alpha \lesssim 2 \times 10^{13}$ Hardy & Lasenby (2016) Knapen, Lin, Zurek (2017)

V. Quartic self-interactions

Quartic self-interaction

Far away from source, force is Yukawa-like GM_iM_j [1] (1) -mr

$$F_{ij} = \frac{\alpha m_i m_j}{r^2} \left[1 + \alpha_{\text{eff}} \left(1 + mr \right) e^{-mr} \right]$$
$$\alpha_{\text{eff}} = \alpha \gamma_i(g) \gamma_j(g)$$

Natural size of coupling

Where

$$g = \epsilon \sim \frac{\alpha^2 m_n^4}{M_{\rm pl}^4}$$

Screening parameter $\gamma \propto \alpha^{-3/2}$

Effective charge

Above $\alpha_{c,i}^{(n)}$, charge is screened.

Consider Earth-Moon system:

Anomalous precession of Moon

Quartic — Old constraints

Quartic — LAGEOS anomalous precession $\epsilon \sim \frac{\alpha^2 m_n^4}{M_{\rm pl}^4}$

Quartic — Lunar-LAGEOS

Sebastian A. R. Ellis — Fine-Tuning and Flfth-Forces

Sebastian A. R. Ellis — Fine-Tuning and Flfth-Forces

Quartic — Earth-LAGEOS

 $\epsilon \sim \frac{\alpha^2 m_n^4}{M_{\rm pl}^4}$

Quartic — Earth-Moon-Sun (LLR-EP)

 $\epsilon \sim \frac{\alpha^2 m_n^4}{M_{\rm pl}^4}$

Quartic — Triple System *PSR J0337+1715* $\epsilon \sim \frac{\alpha^2 m_n^4}{M_{ml}^4}$

Quartic — Cassini

Berkeley, Oct. 3, 2018

VI. Higher-dimensional selfinteractions

O(n>4) self-interaction

Higher-dim. interactions: insight into quantum gravity

Consider d=5 self-interaction, EoM:

$$\nabla^2 \varphi = \frac{\varphi^4}{\Lambda}$$

Imagine force discovered with 1/r behaviour.

Op. of d=5 will not cause deviations as long as $\frac{1}{r^2}\frac{Q}{r}\gtrsim \frac{1}{\Lambda}\frac{Q^4}{r^4}$

e.g. Sun: $Q_{\odot} \lesssim 10^{35}$, $r \sim 10^{11}$ m $\implies \Lambda \gtrsim 10^{60} M_{\rm pl}$

O(n>4) self-interaction

More generally, O(n>4) self-interaction:

$$\nabla^2 \varphi = \frac{\varphi^{n-1}}{\Lambda^{n-4}}$$

Measurement of 1/r force implies:

$$\Lambda > \frac{Q^{\frac{n-2}{n-4}}}{r}$$

For n=5,6 constraint is super-Planckian $n \ge 7$ sub-Planckian

O(n=5) self-interaction in detail

Alternative approach: consider impact of tree-level self-interaction for n=5 self-interaction

$$\frac{c_5}{\Lambda} \sim \frac{(4\pi\alpha)^{5/2}}{16\pi^2} \left(\frac{m_n}{M_{\rm pl}}\right)^4 \frac{1}{M_{\rm pl}} \sim 10^{-76} \frac{\alpha^{5/2}}{M_{\rm pl}}$$

Add tree-level contribution

$$\frac{c_5}{\Lambda} \sim 10^{-76} \frac{\alpha^{5/2}}{M_{\rm pl}} + \frac{\tilde{c}_5}{M_{\rm pl}}$$

Impact of tree-level d=5 self-interaction

Example of lunar precession bound:

Impact of tree-level d=5 self-interaction

Example of Lunar-LAGEOS bound:

Quintic — natural-only

 $\frac{c_5}{\Lambda} \sim \frac{(4\pi\alpha)^{5/2}}{16\pi^2} \left(\frac{m_n}{M_{\rm pl}}\right)^4 \frac{1}{M_{\rm pl}}$

VII. Cubic self-interactions

Cubic self-interaction

Qualitatively different — relevant operator w/ characteristic distance

$$\frac{1}{r_c^2} \frac{Q}{r_c} \sim \kappa \frac{Q^2}{r_c^2} \Rightarrow r_c \sim \frac{1}{\kappa Q}$$

Possible regimes:

$$r < r_c: \quad \varphi \sim \frac{Q}{r}$$

$$1/m > r > r_c: \quad \varphi \sim \frac{1}{\kappa r^2}$$

$$r > 1/m: \quad \varphi \sim \frac{e^{-mr}}{r}$$

Cubic self-interaction

Account for this by modifying potential

$$V_{5,ij}(r,m) = \frac{G_N M_i M_j}{r} \left(1 + \alpha \gamma_i \gamma_j e^{-mr} \left(1 + \frac{f(\kappa)}{r} \right) \right)$$

Function $f(\kappa)$ encodes different regimes $f(\kappa) \xrightarrow{\kappa \to 0} 0$ $f(\kappa) \xrightarrow{\text{large } \kappa} \kappa^{-1}$

Caveat: potential above is not solution of EoM, but gives good fit to numerical solutions

Cubic self-interaction: Vacuum decay

Existence of large cubic means vacuum is metastable

Tunneling constraint:

$$S_E \approx \frac{205m^2}{\kappa^2}$$

$$\Rightarrow \qquad \kappa < \mathcal{O}(1) \ m$$

$$\Rightarrow \quad \alpha < 10^{25} \left(\frac{10^6 \,\mathrm{m}}{\lambda}\right)^{2/3}$$

Cubic self-interaction: Vacuum decay

If $\beta \kappa < 0$, bubble of true vacuum can nucleate

$$|\kappa|\varphi(R_c)^3 \sim \frac{\varphi(R_c)^2}{R_c^2} \Rightarrow R_c \sim \frac{1}{\varphi_0 R_0 |\kappa|} \quad \varphi(R) \sim \frac{\varphi_0 R_0}{R}$$

Requiring we be starting near the origin:

$$\Rightarrow \qquad |\kappa| < \frac{m}{\varphi_0 R_0}$$

$$(R_c) \lesssim m^2/\kappa$$

$$|\kappa| < \frac{m}{\varphi_0 R_0}$$
Consider Neutron Star: $|\kappa| < \frac{m}{\beta M_{\rm NS}} \Rightarrow \alpha < 0.7 \left(\frac{10^6 \text{ m}}{\lambda}\right)^{1/2}$

Screening occurs in finite density media

Screening expected to weaken bounds

Natural self-interactions result in **stronger** bounds:

- Earth-LAGEOS closes large $\alpha\,$ parameter space

Screening occurs in finite density media

Screening expected to weaken bounds

- Earth-LAGEOS closes large α parameter space
- Effective EP violation constrains $m \rightarrow 0$ limit

Screening occurs in finite density media

Screening expected to weaken bounds

- Earth-LAGEOS closes large α parameter space
- Effective EP violation constrains $m \rightarrow 0$ limit
- Strong bound on natural scalars from Cassini

Screening occurs in finite density media

Screening expected to weaken bounds

- Earth-LAGEOS closes large α parameter space
- Effective EP violation constrains $m \rightarrow 0$ limit
- Strong bound on natural scalars from Cassini
- Higher-dim. ops: discovery of 5th force would place super-Planckian constraint

Screening occurs in finite density media

Screening expected to weaken bounds

- Earth-LAGEOS closes large α parameter space
- Effective EP violation constrains $m \rightarrow 0$ limit
- Strong bound on natural scalars from Cassini
- Higher-dim. ops: discovery of 5th force would place super-Planckian constraint
- Cubic operator: new constraints from vacuum decay