HW 10 SOLUTIONS

Problem 1
H&FE Chapter 7, problem 2

To see that & transforms as a pseudovector (i.e. doesn’t change sign under
inversion), recall that & = (w,, w,, w,) really comes from the antisymmetric

tensor
0 —W, Wy
—Wy Wy 0

so to investigate the transformation properties of & we must really investigate
the transformation properties of A. But we know that under a transformation
represented by an orthogonal transformation R, we have

A'= RAR (2)
in terms of matrix multiplication. For inversion R = —1, so
A'=(-DA(-I)=A (3)

so A, and hence &, are invariant under inversion.
Alternatively, one could note that for

(UIJU27U3) = (Ml,MQ,wg) X (T17T27T3) (4)

to hold in the inverted frame the w; must not change sign, since the v; and
r; will.

Problem 2
H&F Chapter 8, Problem 4

We are to compute the principal moments of inertia of a circle of mass
M. Assume the circle lies in the x-y plane. Then clearly

I, = MR? (5)



We also have

L = 7{ y2dm (6)
= 7{ y’pds (7)
R M 72
= 4 R (—) 1 d 8
Jo (" =) 21 R + R? — 22 v (®)
oM R
= — [ VR?—22%dx (9)
m 0
MR?
= = (10)

which is of course the same as I, by symmetry.
H&F Chapter 8, Problem 5

Assume the rod lies along the x-axis with center of mass at the origin as
usual. Then we have

I, = 0 (11)
5 M MI?
MI?

Problem 3
H&F Chapter 8 Problem 8

By symmetry all moments will be the same so we take the easiest route
and compute /,, in spherical coordinates:

L. (spherical shell) = 7{ p(2? +y?) dA ”
Js?
s 21 M ) )
- /0 /0 (47rR2)(R sin® 0)(R” sin 0 dpdf) (15)
MR? =
= 2R / sin (1 — cos® 0)df (16)
0
2
- MR (17)



Similarly,

Lu(sphere) = L [ (™ [7 14 6?0 dgdpd 18

Zzpere)—éﬁRﬁ,ooorsm odbdr (18)
3

= %MRQ (19)

H& F Chapter 8 Problem 11

Following the book’s advice we first compute the moments about an origin
located halfway along the baseline between the two masses m;. The vector
pointing from the CM to this point is @ = —dy, where d = mvzh The off-
diagonal elements of the inertia tensor cancel by symmetry and we have

L. = moh? (20)
0,2

Iy, = QmI(Z) (21)
0,2

I, = 27;11(Z)+mQh2 (22)

so the inertia tensor for this origin is

msh? 0 0
L= o me 0 (23)
0 0 ™= 4m,yh?

Then the displaced axis theorem gives us

0 0 0
Ieyy = I; —M|d’T—| 0 d%> 0 (24)
0 0 0
mimoh?
s 0 0
= 0 mia 0 2 (25)
0 O m12a + Zmljc;zh

Problem 4
H&F Chapter 8 Problem 13



a)We have

1 1
KE = KErot + KECM = §m7)§ + 5[3(4)3 (26)
L = I (27)
b) We have
Loy, 1.
KE=KFE,+ KEcy = 5 + Elwo (28)
L= Iy (29)
Problem 5
H&F Chapter 8 Problem 17
From the Lagrangian
I, , I. - .
L:T:5(92+¢28in29)+§(¢+¢6089)2 (30)

we have the following Euler-Lagrange equations, where we have used the fact

that ¢ and v are cyclic:

ésin@([écos@ — Ig(lb + qlﬁcosﬁ)) =
%([q.ﬁsiHQH—i-IgCOSG(T/I)+¢COSG)) =

C 1+ deost)) =

16 (31)
0 (32)
0. (33)

We may immediately integrate (33) and (32) and then plug the results into

(31) to get

I = ¢sinf(Ipcosh — Ly) (34)

I$sin?0 + Lycosf = 1
[3('@2)“‘@5(3089) = L3

(35)
(36)

where comparison between (36) and the text’s eqn (8.68) reveals that Lj
really is the z-component of the angular momentum (in the body frame) and

4



the suggestive naming of the constant of integration in (35) will be justified
shortly. In principle we could now solve (35) and (36) for ¢ and ¢ in terms
of § and then plug in to (34) but this yields a highly nonlinear ODE for 6.
Instead, we follow the book and make a convenient choice of coordinates:
since I is constant, we may choose our space axes so that

L=Lz (37)

Now, since L3 is the component of L along the body z-axis and the body
z-axis makes an angle f with the space z-axis, we have

L3 = Lcosf (38)

and since L and L are constant (the latter by (33)) we have that cos#, and
hence 6, are constant as well. Now we could substitute (38) into (35) and
(36) and solve for ¢.1) as functions of time, but first we should determine
the relationship bewteen L and [. To do this, note that in the body frame
(denoting the moment of inertia tensor by Z),

I 0 O Wi Tuw,
L|body = I|bodyu_j‘body = 071 0 Wy = IW? (39)
0 0 Ig Ws [3w3
so if
coscos ¢ — cosfsingsiny  —sinycosg — cosfsinpcosyy  sinfsin ¢
U= cosysing+ cosfcospsiny —singsiny + cosfcospcosyy —sinfcos o
sin 6 sin 1) sin f cos ¥ cos
(40)
is our rotation matrix, then we better have
0
L‘space = UL|body = 0 - (41)
L

Using (40), (39) and the text’s eqn (8.68) which gives the components of
Glpody in terms of the Euler angle and their time derivatives, we can write
out the third component of (41), which after some cancellations is

L =1I¢sin?0+ Lycosh = 1. (42)



Now we can solve (35) and (36) for ¢, 4 in terms of L and cos#, yielding

. L
- = 4
6 =" (43)
- 1 1
Y = LCOSH(I—g—F> (44)
so then we finally have
§ = constant (45)
L
1 1
= LcosO(— — =)t + 1y (47)
I3 1

A little reflection on the definition of the Euler angles will show that U is Q,
the rate at which the top spins around the body z-axis, and that ¢ is w,, the
rate of precession, so we have

1 1
Q = LCOSH(I—?)}) (48)
L
Yo T 7 (49)
which agrees with the text’s eqns (8.46) and (8.47).



