
HW 11 SOLUTIONSProblem 1H&F Chapter 9, Problem 2For our three pendula in a 
onstant gravitational �eld, arranged linearlyand ea
h 
oupled to ea
h other by springs of spring 
onstant �, we have theexa
t Lagrangian (setting m = g = l = 1 and setting the equilibirum lengthsof the springs to 0 as dis
ussed in se
tion)L = 12 3Xi=1 _�i2 � 3Xi=1(1� 
os �i)� �2[(�1 � �2)2 + (�2 � �3)2 + (�1 � �3)2℄ (1)whi
h in the small-angle approximation redu
es toL = 12 3Xi=1 _�i2 � 12 3Xi=1(1 + 2�) _�i2 + �(�1�2 + �2�3 + �1�3) (2)so we get t = 12I (3)v = 0B� 1 + 2� �� ���� 1 + 2� ���� �� 1 + 2� 1CA (4)so we have (dropping 
onstant fa
tors in the determinant)jv� !2tj = ������� 1 + 2�� !2 �� ���� 1 + 2�� !2 ���� �� 1 + 2�� !2 ������� (5)= �!6 + 3(1 + 2�)!4 � 3(1 + 3�)(1 + �)!2 + (1 + 3�)2 (6)= (!2 � 1)(�!4 + (2 + 6�)!2 � (1 + 3�)2): (7)We knew to fa
tor out !2 � 1 sin
e we knew that the mode in whi
h all thependula swing in phase and with same amplitude has ! = 1. In this modethe springs do not stret
h at all (hen
e � is not involved). Anyhow, Setting(7) equal to 0 yields !2 = 1; 1 + 3� (8)1



where the 2nd frequen
y is doubly degenerate. The mode asso
iated to !2 =1 
learly has mode ve
tor (1; 1; 1). The other modes ve
tors are orthogonalto this one with respe
t to t, but sin
e t is proportional to the identitymatrix this just means orthogonality in the usual sense, and sin
e the othermode frequen
y is doubly degenerate we 
an 
hoose any basis we want inthe orthogonal 
omplement to (1; 1; 1), so we take the following set of modeve
tors: !2 = 1 (1; 1; 1) (9)!2 = 1 + 3� (1; 0;�1); (1;�2; 1) (10)As for restri
tions on �, we see that in order for !2 to be real we must have� > �13 (11)but for springs the spring 
onstant is always positive so this is automati
allysatis�ed.Problem 2H&F Chapter 9 Problem 3Our Lagrangian for the two masses 
onne
ted to three springs is (againsetting m=1)L = 12( _x12 + _x22) + k2(x2 � x1)2 + 12(x21 + x22) (12)= 12( _x12 + _x22) + 12[(1 + k)x21 + (1 + k)x22 � 2kx1x2℄ (13)so we have, again dropping 
onstant fa
tors,jv� !2tj = ����� k + 1� !2 �k�k k + 1� !2 ����� (14)= !4 � 2(k + 1)!2 + 2k + 1 (15)whi
h has solutions !2 = 1; 2k + 1: (16)2



To get the mode ve
tors we use Kramer's rule, whi
h in this 
ase yields(k + 1� !2; k) so we have !2 = 1 (1; 1) (17)!2 = 2k + 1 (1;�1) (18)Problem 3H&F Chapter 9 Problem 4In this problem we have 3 degrees of freedom, whi
h we 
an take to be z,the height of the 
enter of mass of the plane measured from the equilibriumpoint, and �x; �y, the angles of rotation about the x and y-axes respe
tively.Another way to see that there are three degrees of freedom is to note that thelength of the 4 springs 
ertainly determines the 
on�guration of the system,but this is redundant sin
e 3 points determine a plane so on
e one knows thelength of three of the springs the length of the 4th is determined. Now, if wejust have CM motion it's 
lear that the restoring for
e is �4kzẑ, so the CMmode has mode frequen
y !
m = q4k=M (19)We negle
ted gravity sin
e gravity serves only to 
hange the equilibriumposition of the plate. Now assume the CM is �xed, so then our Lagrangianis, assuming that the plane has dimensions a and b along the x and y axesrespe
tively,L = 12[Ix _�x2 + Iy _�y2 � (20)2k0� a2 sin �y + b2 sin �x!2 +  a2 sin �y � b2 sin �x!21A℄ (21)� 12 "Mb212 _�x2 + Ma212 _�y2 � k(a2�2y + b2�2x)# (22)where we used the fa
t that the heights of the various springs in terms of�x; �y are �(a2 sin �y � b2 sin �x). From (22) we see that �x and �y de
ouple,and we 
an read o� the mode frequen
ies from the Lagrangian as!2rot = s12kM (23)3



(If you don't buy it just write down the EOM's from the Lagrangian). Notethat the dimensions of the plate 
an
el out; although the moments of inertiagrow larger as the dimensions do, the displa
ement of and torque exerted bythe springs also grow, and these e�e
ts 
an
el ea
h other out.Problem 4H&F Chapter 9 Problem 12In terms of our original 
oordinates x1; x2; x3 we have (adjusting x1 andx3 so that l drops out, as in the text)L = m2 ( _x12 + _x22) + M2 _x22 + k2 [(x1 � x2)2 + (x2 � x3)2℄ (24)Now we 
hange to `relative' 
oordinatesx1 = y1 + x
m (25)x3 = y3 + x
m (26)x2 = x
m � �(y1 + y3) (27)where � � mM and (27) is derived from (25),(26) and the de�nition of x
m.Substituting these new 
oordinates into (24) yields, eventually,L = 12(2m+M) _x
m2 + m2 (1 + �)( _y12 + _y32) +m� _y1 _y3 + (28)k2 [(1 + 2� + 2�2)(y21 + y23) + 4�(1 + �)y1y3℄: (29)Now we 
ould write down t and v for this Lagrangian and diagonalize, butthis ends up being quite messy, so instead we just note the symmetry in y1and y3 and make the following substitutionp = y1 + y3 (30)q = y1 � y3 (31)in terms of whi
h y21 + y23 = 12(p2 + q2) (32)y1y3 = 14(p2 � q2) (33)4



so our Lagrangian then be
omes (ignoring the x
m degree of freedom)L = m(1 + �)4 ( _p2 + _q2) + m�4 ( _p2 � _q2) + (34)k2 [12(1 + 2� + 2�2)(p2 + q2) + �(1 + �)(p2 � q2)℄ (35)= m4 (1 + 2�) _p2 + m4 _q2 + k4 [(1 + 2�)2p2 + q2℄ (37)so we see that p and q de
ouple and we 
an just read o� the frequen
ies.Along with the mode ve
tors expressed in terms of y1; y3 we have!2p = s km(1 + 2�) (1; 1) (38)!2q = s km (1;�1)Problem 5H&F Chapter 9 Problem 20From the text's eqn (9.125) we have!1 = 2r �md sin �8 (40)!2 = r2 �md (41)!3 = 2r �md sin 3�8 (42)and the 
orresponding mode ve
tors are( 1p2 ; 1; 1p2); (1; 0;�1); ( 1p2 ;�1; 1p2) (43)
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