HW 3 SOLUTIONS

Problem 1

First we show that if we have no time-dependent constraints (i.e. r; = r;(qi,...

where i labels the different particles in the system) then 7' is a quadratic func-
tion of the ¢;’s. Note that we make no claim about the dependence of 7" on
the gx. As always, summation over repeated indices is implied. First we have
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by the chain rule. Then noticing that, since r; = r;(¢1,. .., qx) we also have
gr? = gr? (1,---,qx), we see that T is a quadratic (degree two) function of
q; a;
the g’s.

That being the case, we have
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Problem 2
a)Since y = f(x) we have by the chain rule y = zf’ so T = %m(mQ +y?) =
sma?(1+ f?) and thus
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and thus our EOM is
mi(1+ %) + ma’ ' f' + mgf =0
b)Assuming that the particle has no KE at the top of the wire, we have
1 .
H =mg[(0) = mgf(x) + 5ma*(1+ 7) (9)

so solving for 7 yields
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Problem 3
We have m ]
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where J is a constant since % = (0. Thus
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and we can try plugging this into our old Lagrangian to get a new Lagrangian
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One easily finds the E-L equation for r to be
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which does not agree with eqn. 1.77 in the text. Instead, if we consider the
Routhian
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then our E-L eqn is
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as desired.
Problem 4

Given a curve y(t) = (r(t)cost(t), r(t)sinf(t)), t € [0, 1], one easily computes
that '
A =72 + r?02. (21)

We then consider the integral

A= /01 A2t = /01(7'~2 +r26%)dt (22)
This is of course not quite the same as the length integral L (which would
have the integrand in a square root) but one can show that the ODE obtained
from A yields the same paths one would get from L but with the additional
constraint that 4 be constant. So we apply our variational principles to A
and get the following two coupled ODE, which just say (in polar coordinates)
that + should be a zero acceleration path:
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The second equation above can be integrated trivially to get
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where k is a constant. Noting that the curve we seek passes through the
origin (r = 0), we see from (25) that, in our case (but certainly not in
others), k = 0. Then, again from (25), we see that for r # 0 we have = 0
so (23) tells us that # = 0 and hence

v(t) = (atcos(by), atsin(fy)). (26)

where a, y are constants. Demanding that (1) = (1,1) fixes a and 6y,
yielding
v(t) = (t.1) (27)

Problem 5

a) Since we are taking the positive x-direction to be downwards and we are
taking x=0 at the top of the path, conservation of energy reads
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and this combined with % = /1 + y"? yields for the time T

Tly(e)) = [ <=1 (30)

which gives the eqn 2.76 from the text when multiplied on both sides by /2g.

or

b)The integrand in T is
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SO since g—;‘ = (0 we have
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where 1 is a constant. This can be solved to give
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which can be integrated by parts to yield, with the condition x(0)=0,
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which differs slightly from eqn. 2.77 in the text.
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