
HW 3 SOLUTIONS
Problem 1First we show that if we have no time-dependent 
onstraints (i.e. ri = ri(q1; : : : ; qk)where i labels the di�erent parti
les in the system) then T is a quadrati
 fun
-tion of the _qk's. Note that we make no 
laim about the dependen
e of T onthe qk. As always, summation over repeated indi
es is implied. First we haveT = 12mi _ri � _ri = 12mi �ri�qk � �ri�qj _qk _qj (1)by the 
hain rule. Then noti
ing that, sin
e ri = ri(q1; : : : ; qk) we also have�ri�qj = �ri�qj (q1; : : : ; qk), we see that T is a quadrati
 (degree two) fun
tion ofthe _qk's.That being the 
ase, we havepl _ql = �L� _ql _ql = 12mi _ql �ri�qk � �ri�qj ( _qkÆjl + _qjÆkl) = mi �ri�qk � �ri�qj _qk _qj = 2T (2)so H = pkqk � L = 2T � (T � V ) = T + V = E (3)Problem 2a)Sin
e y = f(x) we have by the 
hain rule _y = _xf 0 so T = 12m( _x2 + _y2) =12m _x2(1 + f 02) and thus L = 12m _x2(1 + f 02)�mgf (4)so �L�x = m _x2f 00 �mgf 0 (5)�L� _x = m _x(1 + f 02) (6)ddt �L� _x = m�x(1 + f 02) + 2m _x2f 00f 0 (7)1



and thus our EOM ism�x(1 + f 02) +m _x2f 00f 0 +mgf 0 = 0b)Assuming that the parti
le has no KE at the top of the wire, we haveH = mgf(0) = mgf(x) + 12m _x2(1 + f 02) (9)so solving for _x yields _x = s2g(f(0)� f(x))1 + f 02
) � = Z �0 dt = Z 10 dtdxdx = Z 10 1_xdx (11)so h(x) = r 1+f 022g(f(0)�f(x)) .Problem 3We have L = m2 ( _r2 + r2 _�2)� V (r) (12)so p� = mr2 _� � J (13)where J is a 
onstant sin
e �L�� = 0 . Thus_� = Jmr2 (14)and we 
an try plugging this into our old Lagrangian to get a new LagrangianL0 = m2 _r2 + J22mr2 � V (r) (15)One easily �nds the E-L equation for r to bem�r = �dVdr � J2mr3 (16)
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whi
h does not agree with eqn. 1.77 in the text. Instead, if we 
onsider theRouthianR = R(r; _r; �; _� = Jmr2 ) = L� p� _q� (17)= m2 _r2 + J22mr2 � V (r)� J Jmr2 (18)= m2 _r2 � J22mr2 � V (r) (19)then our E-L eqn is �r = �dVdr + J2mr3 (20)as desired.Problem 4Given a 
urve 
(t) = (r(t)
os�(t); r(t)sin�(t)), t 2 [0; 1℄, one easily 
omputesthat _
2 = _r2 + r2 _�2: (21)We then 
onsider the integralA = Z 10 _
2dt = Z 10 ( _r2 + r2 _�2)dt (22)This is of 
ourse not quite the same as the length integral L (whi
h wouldhave the integrand in a square root) but one 
an show that the ODE obtainedfrom A yields the same paths one would get from L but with the additional
onstraint that _
 be 
onstant. So we apply our variational prin
iples to Aand get the following two 
oupled ODE, whi
h just say (in polar 
oordinates)that 
 should be a zero a

eleration path:�r � r _�2 = 0 (23)ddt(r2 _�) = 0 (24)The se
ond equation above 
an be integrated trivially to getr2 _� = k (25)3



where k is a 
onstant. Noting that the 
urve we seek passes through theorigin (r = 0), we see from (25) that, in our 
ase (but 
ertainly not inothers), k = 0. Then, again from (25), we see that for r 6= 0 we have _� = 0so (23) tells us that �r = 0 and hen
e
(t) = (at
os(�0); atsin(�0)): (26)where a, �0 are 
onstants. Demanding that 
(1) = (1; 1) �xes a and �0,yielding 
(t) = (t; t) (27)Problem 5a) Sin
e we are taking the positive x-dire
tion to be downwards and we aretaking x=0 at the top of the path, 
onservation of energy reads12mv2 = mgx (28)or v = q2gx (29)and this 
ombined with dsdx = p1 + y02 yields for the time TT [y(x)℄ = Z x1x0 1p2gxq1 + y02 (30)whi
h gives the eqn 2.76 from the text when multiplied on both sides by p2g.b)The integrand in T is L = L(y; y0; x) = s1 + y02x (31)so sin
e �L�y = 0 we have �L�y0 = y0qx(1 + y02) = pr (32)where r is a 
onstant. This 
an be solved to givey0 = s xr1� xr (33)4



whi
h 
an be integrated by parts to yield, with the 
ondition x(0)=0,y(x) = � 12prqx(1� rx) + 12rsin�1(prx) (34)whi
h di�ers slightly from eqn. 2.77 in the text.
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