HW 4 SOLUTIONS

Problem 1

a) The position vector of our particle in terms of ¢ and our generalized coor-
dinate 0 is, taking the center of the ring to be the origin and identifying Q¢
as our azimuthal angle and # as a cousin of the usual polar angle in spherical
coordinates,

r(6,t) = (Rcos(Q2t)sin(0), Rsin(Qt)sin(f), — Rcos(0)) (1)
so taking a time derivative and a dot product yields
T = %32(9’2 + Q2sin20) 2)

Combining this with the usual V' = mgR(1 — cosf) yields

L= %RQ(QQ + Q%sin*0) — mgR(1 — cosb) (3)
b)We have
oL ) 2002 .;
0 = —mgRsinf + mR* Q7 sinfcost (4)
d OL -

so by the E-L equations the equilbrium condition f=0is equivalent to
RO?cosfsinf = gsinf) (6)

Note that we do not divide both sides by sinfl since sinfl might be 0. In fact,
6 = 0, 7 satisfy (6) and hence give us two equilibrium points. If § # 0, 7 then
we may divide (6) by sinf to get the following equation for an additional
equilibrium point fy:

(7)

g
~050y =
costy = 53
which has a solution (other than 0 or ) if and only if

g
RS2

<1 Q>4/¢g/R= Q0 (8)



¢)We consider our equilibirum points one at a time.

)0 =0
For # — 0 = << 1, we have up to order §?
sinf ~ 6 (9)
cosf) ~ 1 —6°/2 (10)

so plugging these into L gives
L= %(RQQQ + R*0%0%) — mgRO?/2 = mR/2[RI* + (RO — ¢)67]  (11)

so this equilibrium point is unstable if RQ? > ¢. Physically, this just means
that if the hoop is spinning fast enough and one slightly displaces the bead
from the bottom, centrifugal forces will overcome gravity and pull the bead
outward, and hence upward.

g =m
Now we have to expand around 7. We have

0~ costl,+ Ceosd] (07 + ol (O— ) (12

cos c0s6| + —5cos 25708 7r
- 14 (9—7r) (13)
00~ sindly+ sindlo(6— 1)+ S singl (0 n)?  (14)

sin sin|x + —55inflx o ——sin 7r
= 70 (15)

To clean things up a bit introduce ¢ = 6 — 7, the displacement from equilib-
rium. This corresponds to setting our generalized coordinate to 0 at equilib-
rium, as discussed in the text. In terms of ¢, we have

1
cosh ~ —1+ 5@52 (16)
sin ~ —¢ (17)
sin’0 ~ ¢’ (18)

So our Lagrangian is, noting that ¢ = 4,

. gR mR
L= %(R2¢2+R292¢2)—2m9R+%¢2 DRegr T 5 (R +9)6” (19)



where we have thrown out any constants in the Lagrangian since we know
that they don’t influence the eqns of motion. We see that § = 7 is always
unstable since the coefficient of ¢? in (19) is always positive. This makes
sense since both the centrifugal force and gravity act to pull the bead down
from the top.

i)y = cos ™ (557)

Here things get a little tricky. We follow the exact same logic as above, but
the computation gets a little hairier, and we won’t present all the details. To
clean things up, introduce z = 2%, = (%2it)? and ¢) = 6 — 6. Then we have,

using sin(cos™'(z)) = V1 — 22
cos) ~ x—1—a%)— ng (20)
1
sinff ~ V1 —a2+ 1) — 5\/1 — 221)? (21)
sin?0 ~ 1 — 2?4+ 22v1 — 22 + (20 — 1)¢)? (22)

where (22) was obtained by very carefully squaring (21) and keeping all terms
up to second order. Plugging all this into the Lagrangian, we find that the
terms linear in ¢ cancel (why should we expect this?) and we are eventually
left with

mR

2

Plugging in our definition of x, we find the coefficient of 1% in (23) to be
—mR;QZ(l — Rg§24) which is always negative (the expression in parentheses
never becomes negative itself because this equilibirum point only exists when
x < 1 which is equivalent to the expression in parentheses being positive).

Thus this equilibrium point, when it exists, is always stable.

L = const + %R%&Q + (2RQ*2* — RQ* — gx)y? (23)

Problem 2
For the driven HO, we have
L=T—-V+F(t)q (24)

and since we have no constraints at all, let alone time-dependent ones, the
result of Problem 1 of HW 3 applies and we have

H=2T - L=T+V -F(t)g#T+V =E (25)
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For the pendulum of changing length we have, using r(t) = (I(¢)sinf, — I(t)cosf))
(where the origin is at the pivot of the pendulum),

L= %(F(t)éQ +i(1)2) — mgl(t)(1 — cosh) (26)
i 0L Moy, i
H = 0% - L= E(Z (t)0° — 1(t)7) + mgl(t)(1 — cosh) (27)

which can’t be the energy since the [(¢)? term has the wrong sign.

Problem 3

If w is the frequency when m; is held fixed then, using the fact that w =
k/my < k = w?my we have

Winy fized = \/ k/m1 = wy/ma/my. (28)

One can derive this more formally by writing down the Lagrangian in both
cases and including only the kinetic term for the mass which isn’t fixed.

Now, if both masses are free we then have 2 degrees of freedom, one of
which will correspond to the Center of Mass which we will set to 0 and the
other of which will correspond to the relative distance between the masses.
More precisely, we write L in terms of the coordinates x; and x5 of the
individual masses defined with respect to some origin

L =1/2(my21” + mazis®) + k/2(z1 — x5)° (29)

and then introduce new coordinates

1
= ———(myx1 + Mex 30
Q m]—l—mg(m]T] mQTQ) ( )

¢ = T1— Tg (31)

where clearly ) is the CM coordinate and ¢ is the relative coordinate. Now
we may assume that Q = @ = 0; if not, we just move to the frame in
which this is true (this will be another inertial frame since the CM moves
uniformly). Now, one can check that

. ml

RQ=0=2=—-——1 (32)
mgy



which then implies that

0= —ds = (1+ )z, (33)

mgy

Using (33) and (32) we can then rewrite L solely in terms of ¢ and ¢, yielding
(after a little algebra)

1 mmy ., k &= n.o k
I ~2==C 34
S, TR0 =50 Y (34)
where p =SB is known as the reduced mass. Then we finally have
Wiree = /11 = 1 w2mal —+—) — w14+ 22 (35)
msy my
Problem 4
Using () = = —6 eqn (3.35) from the text, and the first order taylor expansion
(1+T)'~1+m¢ we have
1 1
Ay = — + -1 (36)
1—2¢ \l4(§—e)2
(14204 )— 1 (37)
TENT 2002
~ —1-2+,/(1+4e) — 1 (38)
= 1242/ (39)
Thus
6)\+t . eA,t _ 6(7172e)t(€2\/2t . 6—2\/Et) (40)
= 217 29ginh(2/et) (41)
S 2e7t(2y/et) (42)
=  dt\Jee ! (43)
= D =4/e (44)



Problem 5

a) For t > 0, we have
§+2¢+qg=1 (45)

To find the genereal solution, we first note that ¢ = 1 is a particular solution.

Then adding to that the known general solution to the homogeneous version
of (45) yields
q(t) = Ae '+ Bte ' +1 (46)

Applying the boundary conditions ¢(0) = ¢(0) =0 yields A = B = —1, so
qit) = —e " —te " +1 (47)

b)First we write down a complex EOM for a complex coordinate g, the real
part of which is the EOM we really want to solve:

G + 20+ q. = €. (48)
Plugging in the ansatz g, = Ae' and dividing out by e’ yields
A+ 2A+A=1= A= —i)2 (49)
so we have a particular solution
1

(1) = Rela(1)) = Re(—3e") = L sint (30)

giving a relative phase of 7/4.
c)Again, the general solution to the inhomogeneous equation is the sum of

a particular solution (like the one found above) and the general solution to
the homogeneous equation:

1
q(t) = Ae™" + Bte ' + Esmt. (51)
Applying our boundary conditions ¢(0) = ¢(0) = 0 yields A =0,B = —1/2

SO
q(t) = 1/2(sint — te™"). (52)



