
BaBar, Simba & dark matter
Zoltan Ligeti

• Status and future of flavor physics

• Improvements in inclusive B → Xsγ and B → Xu`ν̄

• A somewhat unusual search in B → K(∗)`+`−



Disclaimers

• A few weeks ago when I got a phone call about the report from the intensity
frontier review, I thought I’d get dis-invited and would not have to prepare this talk

Z L – p. 1



Disclaimers

• A few weeks ago when I got a phone call about the report from the intensity
frontier review, I thought I’d get dis-invited and would not have to prepare this talk

This has not happened, so I thought I should tell you my opinions

Z L – p. 1



Disclaimers

• A few weeks ago when I got a phone call about the report from the intensity
frontier review, I thought I’d get dis-invited and would not have to prepare this talk

This has not happened, so I thought I should tell you my opinions

• To me it’s obvious that an order of magnitude (or more) improved sensitivity to
plausible new short distance physics is worth pursuing

Many people disagree... I don’t get it.
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The standard model CKM fit

• Very impressive accomplishments

• The level of agreement between the
measurements often misinterpreted

• Increasing the number of parame-
ters can alter the fit completely

• Plausible TeV scale NP scenarios,
consistent with all low energy data,
with sizable flavor physics effects

• CKM is inevitable; the question is
not if it’s correct, but is it sufficient?
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• It will require a lot more data to answer this question at the < 10% level
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An example: new physics in B –B mixing

• Large class of models: (i) 3× 3 CKM matrix is unitary
Large class of models: (ii) Tree-level decays dominated by SM

Two parameters for each neutral meson: M12 = MSM
12 (1 + h e2iσ) = MSM

12 (rd e
2iθd)

• Tree-level CKM constraints unaffected Observables sensitive to NP in mixing

Tree-level Loop-dominated

• Isolating modest new physics contributions requires many measurements
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The one-page summary of BaBar & Belle

• Strong constraints on NP in many FCNC amplitudes — much more progress in
this and more interesting than just the uncertainties of the SM parameters

Qualitative change before vs. after 2004 — the real justification for the Nobel Prize in my mind
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M12 = MSM
12 (rd e

2iθd) = MSM
12 (1 + hd e

2iσd)

• Despite huge progress∼20% NP contribution to most loop processes still allowed
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Constraints on new physics in B0
d mixing

• Overconstraining measurements (tree vs. loop) are crucial to bound new physics
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ντ →w/o B 

ρ, η determined from
(effectively) tree level
and loop-induced pro-
cesses, separately

M12 = MSM
12 (1 + he2iσ)

a
Only the SM-like region is allowed,
even in the presence of NP in mixing

NP ∼ SM is still allowed, approaching
NP� SM unless σd = 0 (mod π/2)

• Question: How small is h? Is h <∼ 0.1? [assume h∼(4πv/Λflav.)
2 — is Λflav.�ΛEWSB?]
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Where do we go from here?



My personal super(-KEK)-B best buy list

• Want observables: (i) sensitive to different NP, (ii) measurements can improve by
an order of magnitude, and (iii) not limited by hadronic uncertainties:

• Difference of CP asymmetries, SψKS − SφKS
• γ from CP asymmetries in tree-level decays vs. γ from SψKS and ∆md/∆ms

• Search for charged lepton flavor violation, τ → µγ, τ → 3µ, and similar modes

• Search for CP violation in D0 −D0 mixing

• The CP asymmetry in semileptonic decay, ASL

• The CP asymmetry in the radiative decay, SK∗γ

• Rare decay searches and refinements: b→ sνν̄, B → τ ν̄, etc.

• Complementary to LHCb

• Any one of these measurements has the potential to establish new physics

Z L – p. 6



What was it in the BaBar Book?
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What was it in the BaBar Book?

• There was no executive summary! Neither a list of gold-plated measurements...
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Outline

• Pick two topics where significant progress could still come from existing data

– Inclusive semileptonic B decays [Bernlochner, Lacker, ZL, Stewart, Tackmann, Tackmann]

... SIMBA [ = Analysis of B Meson Inclusive Spectra]

– An unusual dark matter search [Freytsis, ZL, Thaler]

... Bump hunting in B → K(∗)`+`−

– Conclusions
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Semileptonic and rare B decays
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• |Vub| is the dominant uncertainty of the side of the UT opposite to β

• Error of |Vcb| is large part of the uncertainty in the εK constraint, and in K → πνν̄

Both |Vcb| and |Vub|: persistent ∼ 2σ tension between inclusive & exclusive



Determination of |Vub| is far from settled

• Determined by tree-level decays
Crucial for comparing tree-dominated
and loop-mediated processes

• |Vub|π`ν̄−LQCD = (3.5± 0.5)× 10−3

|Vub|incl−BLNP = (4.3± 0.3)× 10−3

|Vub|incl−BLL = (4.9± 0.5)× 10−3

|Vub|τν = (5.2± 0.5± 0.4fB)× 10−3

SM CKM fit: (3.54± 0.18)× 10−3

• Fluctuation, bad theory, new physics?
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• b → qγ, q `+`−, q νν̄ (q = s, d) are sensitive probes of the SM; theoretical tools
same as for |Vub|— sensitivity to NP limited by accuracy of theory
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Another way of plotting sin 2β vs. |Vub|

• UTfit has talked about this
for several years; lingering
around since 2003 or so, ∼ 2σ
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|Vub| and new physics ...

• At the present time, including B → τ ν̄, the SM is “disfavored” at >2σ
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ντ →w/o B 
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Parameterize NP in B0–B0 mixing: M12 = MSM
12 (1 + hd e

2iσd)

• There are NP models that would ease this “tension” (that’s not the real question)
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How to make sense of this?

• B → π`ν̄ (“exclusive”): theory is in the hand of lattice QCD

– I would not be too worried about QCD sum rules and other model calculations

– Lattice QCD: fB is simpler than q2-dependent form factors

– However, |Vub| from B → τν is the highest (could be experimental fluctuation)

• B → Xu`ν̄ (“inclusive”): theoretical improvements possible

– However, e.g., in BLNP, recently computed NNLO terms increase |Vub|

– Work on better combination of B → Xu`ν̄ and B → Xsγ

• For most of these measurements, BaBar and Belle results are consistent

Statistical fluctuations possible, though results seem fairly steady...

• (My) problem: results I’d trust the least are the ones most consistent with the SM
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The challenge of inclusive |Vub| measurements

• Total rate calculable with ∼ 4% uncertainty, similar to B(B → Xc`ν̄)

• To remove the huge charm background
(|Vcb/Vub|2 ∼ 100), need phase space cuts

Can enhance pert. and nonpert. corrections

• Instead of being constants, the hadronic
parameters become functions (like PDFs)

Leading order: universal & related to B → Xsγ;
O(ΛQCD/mb): several new unknown functions
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• Nonperturbative effects shift endpoint 1
2 mb → 1

2 mB & determine its shape
↗

• Shape in the endpoint region is determined by b quark PDF inB [“shape function”]
Related to B → Xsγ photon spectrum at lowest order [Bigi, Shifman, Uraltsev, Vainshtein; Neubert]
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Astonishing calculations: B → Xsγ rate

• One (if not “the”) most elaborate SM calculations
Constrains many models: 2HDM, SUSY, LRSM, etc.

• NNLO practically completed [Misiak et al., hep-ph/0609232]

4-loop running, 3-loop matching and matrix elements

Scale dependencies significantly reduced ⇒

• B(B → Xsγ)
∣∣
Eγ>1.6GeV

= (3.15± 0.23)× 10−4

experiment: (3.55± 0.26)× 10−4

O(104) diagrams, e.g.:

b s

c

c

γ

�
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Regions of B → Xsγ photon spectrum

• Important both for |Vub| and constraining NP

• The peak is around Eγ ∼ 2.3 GeV

Three cases: 1) ΛQCD ∼ mB − 2Eγ � mB [“SCET”]

Three cases: 2) ΛQCD � mB − 2Eγ � mB [“MSOPE”]

Three cases: 3) ΛQCD � mB − 2Eγ ∼ mB

Expansions and theory uncertainties differ in the 3 regions

Neither 1) nor 2) is fully appropriate

[Belle, 0907.1384]

• Experimental systematic error rapidly increases for smaller Ecut
γ

↗

• Current practice: Compare rate extrapolated to 1.6 GeV with theoretical prediction

Con: (i) extrapolation uses theory, so comparison of theory and data is effectively
done at the measured values; (ii) best use of the most precise measurements?

Z L – p. 15



Advantages of a global fit

• Optimally combine all information, while consistently treating the uncertainties
and their correlations (experimental, theoretical, parameters)

• Simultaneously determine:

– Overall normalization: B(B → Xsγ), |Vub|

– Parameters: mb, shape function(s)

• Utilize all measurements:

– Different B → Xsγ spectra, or partial rates

– Different B → Xu`ν̄ spectra, or partial rates

– Eventually also B → Xs`
+`−

– Include other constraints on mb, λ1, etc.

• Same strategy as for |Vcb|, just a bit more complicated...
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The shape function (b quark PDF in B)

• The shape function S(ω, µ) contains nonperturbative physics and obeys a RGE

If S(ω, µΛ) has exponentially small tail, but RGE
running gives a long tail and divergent moments

[Balzereit, Mannel, Kilian]

S(ω, µi) =

∫
dω
′
US(ω − ω′, µi, µΛ)S(ω

′
, µΛ)

Constraint: moments (OPE) + B → Xsγ shape
Constraint: How to combine these?

– Consistent setup at any order, in any scheme

– Stable results for varying µΛ

– (SF modeling scale, must be part of uncert.)

– Similar to how all matrix elements are defined
– e.g., BK(µ) = B̂K × [αs(µ)]2/9(1 + . . .)

Derive: [ZL, Stewart, Tackmann, 0807.1926]

S(ω, µΛ) =

∫
dk C0(ω−k, µΛ)F (k)
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The shape function (b quark PDF in B)

• The shape function S(ω, µ) contains nonperturbative physics and obeys a RGE

If S(ω, µΛ) has exponentially small tail, but RGE
running gives a long tail and divergent moments

[Balzereit, Mannel, Kilian]

S(ω, µi) =

∫
dω
′
US(ω − ω′, µi, µΛ)S(ω

′
, µΛ)

Constraint: moments (OPE) + B → Xsγ shape
Constraint: How to combine these?

– Consistent setup at any order, in any scheme

– Stable results for varying µΛ

– (SF modeling scale, must be part of uncert.)

– Similar to how all matrix elements are defined
– e.g., BK(µ) = B̂K × [αs(µ)]2/9(1 + . . .)

Derive: [ZL, Stewart, Tackmann, 0807.1926]
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Changing schemes: mb

• Going to a short distance mass scheme removes the dip at small ω

• Want to define short distance
(hatted) quantities such that:

S(ω) =

∫
dk C0(ω − k)F (k)

S(ω) =

∫
dk Ĉ0(ω − k) F̂ (k)

Switch from pole to short dis-
tance scheme:

mb = m̂b + δmb

λ1 = λ̂1 + δλ1
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• Can use any short distance mass scheme (1S, kinetic, PS, shape function, . . . )
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Changing schemes: λ1

• “Invisible” renormalon in λ1 at O(α2
s) ? ⇒ kinetic and SF schemes for λ1

• Introduce invisible scheme: λi
1 = λ1−0αs−R2 α

2
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4
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Shape function: the bottom line

S(ω, µΛ) =

∫
dk Ĉ0(ω − k, µΛ) F̂ (k)

F̂ : nonperturbative
F̂ : determines peak region
F̂ : well-defined moments
F̂ : fit from data

0
0

1

1

2

20.2 0.4

0.5

0.6 0.8 1.2 1.4

1.5

1.6 1.8

k [GeV]

F̂
(k

)
[G

e
V
−
1
]

9 models for F̂ (k)
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Scale (in)dependence of B → Xsγ spectrum

• Dependence on 3 scales in the problem can be handled appropriately:

µΛ = 1.2, 1.5, 1.9 GeV µi = 2.0, 2.5, 3.0 GeV µb = 2.35, 4.7, 9.4 GeV
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1

• In other approaches, using models for S(ω, µΛ) run up to µi, dependence on µΛ

ignored so far, but it must be considered an uncertainty ⇒ This is how to solve it
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Designer orthonormal functions

• Devise suitable orthonormal basis functions
(earlier: fit parameters of model functions to data)

F̂ (λx) = 1
λ

[∑
cnfn(x)

]2, n th moment ∼ΛnQCD

fn(x) ∼ Pn[y(x)] ← Legendre polynomials

• Approximating a model shape function

Better to add a new term in an orthonormal
basis than a new parameter to a model:
– less parameter correlations
– errors easier to quantify

“With four parameters I can fit an elephant, and with five
I can make him wiggle his trunk.” (John von Neumann)
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The B → Xsγ spectrum again

• Same 9 models as before (fixed 0th, 1st, 2nd moments), and the resulting spectra
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• At NNLL: Shape in peak region not determined at all by first few moments

At NNLL: Perturbative tail of shape function starts to dominate for Eγ <∼ 2.1 GeV

• Not shown: subleading shape functions, subleading corrections not in C incl
7 ,

Not shown: kinematic power corrections, boost to Υ(4S) frame
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Details of fitting the data

• F̂ (k) enters the spectra linearly
⇒ can calculate independently the contribution of fm fn in the expansion of F̂ (k):

dΓ =
∑

cm cn︸ ︷︷ ︸
fit

dΓmn︸ ︷︷ ︸
compute

dΓmn = Γ0H(p
±
X)

∫ p+
X

0

dk
P̂ (p−, k)

λ
fm

(
p+
X − k
λ

)
fn

(
p+
X − k
λ

)
︸ ︷︷ ︸

basis functions

Fit the ci coefficients from all measured (binned) spectra (similar to |Vcb| fit)

• SIMBA includes: [all plots preliminary]
– Simultaneous fit using all available information
– Correlations in data, propagation of SF uncertainties
– Validate the fits with pseudo-experiments
– Check model independence by varying number of basis functions in fit (up to 5)
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Fits results for B → Xsγ
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• Belle: 605 fb−1 — they provided the covariance matrix, experimental efficiency,
Belle: and resolution (latter two folded into theory prediction)

• BaBar: hadronic tag (210 fb−1) and sum over exclusive modes (80 fb−1)
BaBar: (spectra efficiency corrected, resolution not an issue)

BaBar: leptonic tag data cannot (yet) be included
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Fits results for B → Xsγ

0
2

5

10

15

20

25

30

35

1.8 2.2 2.4 2.6 2.8
Eγ [GeV]

E
v
e
n
ts

[1
0
3
/
5
0
M

e
V
]

Belle

Fit

0

1

2

0.2

0.4

0.6

0.8

1.2

1.4

1.9 2.1 2.2 2.3 2.4 2.5 2.6
Eγ [GeV]

∆
B(

B
→

X
s
γ
)
[1
0
−
4
/
0
.1

G
e
V
]

BABAR (hadronic tag)

Fit

0

1

2

0.2

0.4

0.6

0.8

1.2

1.4

1.9 2.1 2.2 2.3 2.4 2.5 2.6
Eγ [GeV]

∆
B(

B
→

X
s
γ
)
[1
0
−
4
/
0
.1

G
e
V
]

BABAR (sum of excl.)

Fit

• χ2/ndf = 27.0/38

• SM prediction:
∣∣C incl

7

∣∣SM
= 0.354+0.011

−0.012

SM prediction: |VtbVts| = (40.7+0.4
−0.5)× 10−3

• Fit result:
∣∣C incl

7 VtbVts
∣∣ = (15.00±0.54exp)×10−3

• Data slightly above SM prediction, as in HFAG
combination vs. Misiak et al. 13
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Convergence of basis expansion
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• Uncertainties underestimated with too few coefficients
– Would need to estimate / include additional uncertainty from truncation

• Little change in going from 4→ 5 basis functions
– Truncation uncertainty negligible compared to other uncertainties

• Also varied λ to check basis independence (change form of basis functions)
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B → Xu`ν̄ is more complicated

• “Natural” kinematic variables: p±X = EX∓|~pX|— “jettiness” of hadronic final state

B → Xsγ: p+
X = mB − 2Eγ & p−X ≡ mB, but independent variables in B → Xu`ν̄

• Three cases: 1) Λ ∼ p+
X � p−X

Three cases: 2) Λ� p+
X � p−X

}
SF region

Three cases: 3) Λ� p+
X ∼ p

−
X local OPE region

Want to make no assumptions how p−X compares to mB

• B → Xu`ν̄: 3-body final state, appreciable rate
in region 3), where hadronic final state not jet-like

E.g., m2
X < m2

D does not imply p+
X � p−X 0
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• Existing approaches based on theory in one region, extrapolated / modeled to rest
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Even more preliminary — |Vub|

• B → Xu`ν̄ hadronic tag
– BaBar mX, mX – q2, p+

X

– Belle mX

• B → Xu`ν̄ lepton endpoint
– BaBar EΥ

` > 2.2 GeV

– Belle EΥ
` > 2.3 GeV

• B → Xsγ spectra
– Belle latest result (shown)
– BaBar sum over exclusive + hadronic tag

• m1S
b , λ1 from B → Xc`ν̄ fit

– m1S
b = (4.66± 0.05) GeV

– λ1 = (−0.34± 0.05) GeV2
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Even more preliminary — |Vub|
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• Eγ spectrum is off without B → Xsγ in the fit

• Including it, favors lower values of |Vub|
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If all else fails: “Grinstein-type double ratios”

• Continuum theory may be competitive using HQS + chiral symmetry suppression

• fB

fBs
×
fDs
fD

— lattice: double ratio = 1 within few % [Grinstein ’93]

• f (B→ρ`ν̄)

f (B→K∗`+`−)
×
f (D→K∗`ν̄)

f (D→ρ`ν̄)
or q2 spectra — accessible soon? [ZL, Wise; Grinstein, Pirjol]

D → ρ`ν̄ data still consistent with no SU(3) breaking in form factors
[ZL, Stewart, Wise]

Could lattice QCD do more to pin down the corrections?

Worth looking at similar ratio with K, π — role of B∗ pole...?

• B(B → `ν̄)

B(Bs → `+`−)
×
B(Ds → `ν̄)

B(D → `ν̄)
— very clean... after 2016? [Ringberg workshop, ’03]

• B(Bu → `ν̄)

B(Bd → µ+µ−)
— even cleaner... around 2020? [Grinstein, CKM’06]

• Also useful for probing SUSY parameter space [Akeroyd, Mahmoudi, 1007.2757]
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Summary: inclusive B → Xsγ and |Vub|

• Qualitatively better analyses are possible than those implemented so far
– Fitting F (k) instead of modeling S(ω, µ)

– Designer orthonormal functions — reduce role of shape function modeling
– Fully consistent combination of all phase space regions
– Decouple SF shape variation from mb variation

• Progress can be made using current data:
Combine all B → Xsγ,Xu`ν̄,Xc`ν̄ data to constrain short distance physics & SFs
Need spectra & correlations; so far we had to rely more on Belle than BaBar data

• Refining |Vub| will remain important to constrain new physics in B0 –B0 mixing
(Uncomfortable ∼2σ tensions, PDG in 2008 inflated error for the first time)
Recently Λb lifetime and Γ(Ds → X`ν̄) taught us about what the resolution is not

• |Vub| is tricky: to draw conclusions about new physics, we’ll want ≥ 2 extractions
with different uncertainties to agree well (inclusive, exclusive, leptonic)
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Dark matter in B → K(∗)`+`−?



Bump hunting: not only for ATLAS & CMS...

(The first LHC result superseding Tevatron limits)
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Dark matter

• Recent observations of cosmic ray excesses led to a flurry of DM model building

Standard WIMPs unable to fit the data (lack of antiprotons, hard lepton spectrum)

• An idea: DM annihilates to SM through light bosons [Pospelov, Ritz, Voloshin; Arkani-Hamed et al.]

χχ→ φ(∗)φ(∗), φ→ `+`−, π+π−, . . .

“Dark bosons” couple to leptons with αX = λ2
X/(4π), lots of different constraints

depending on mass and coupling

• Most popular scenario: φµ couples to ψ̄γµψ and mixes with γ (“dark photons”)
... other viable models also exist

A lot of the constraints and phenomenology was worked out here at SLAC
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The axion portal

• The new particle could also be a scalar with axion-like couplings [Nomura, Thaler, 0810.5397]

Lint =
λ

fa
(ψ̄γµγ5ψ) ∂µa →

λmψ

fa
(ψ̄γ5ψ) a

The most interesting part of parameter space is thought to be:

mK −mπ < ma <∼ 800 MeV, fa ∼ (1− 3) TeV

• Coupling to fermions ∝ mψ, so FCNC b→ sa loops are enhanced by mt

With only Lint, divergent loops ⇒ need to embed in a renormalizable theory

• A simple explicit model: Peccei-Quinn symmetric NMSSM (2HDM + a singlet)

A simple explicit model: (SUSY part not directly relevant for us, more general DFSZ-axion)

• At one loop: M(b→ sa) ∝M(b→ sA0)2HDM (from tW, tH, tHW penguins)
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The 2HDM calculation

[Hall and Wise, NPB 187 (1981) 397] [Frere, Vermaseren, Gavela, PLB 103 (1981) 129]

• Results disagree, neither knew about other

• Many papers cited both, none commented
on disagreement... so we computed it all...
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The current data

• Considering the combined BaBar/Belle rate measurement and the spectra...

we used: B(B → Ka)×B(a→ µ+µ−) < 10−7

we used: [at a high, but who-knows-what CL...]

Can improve independent of form factor uncertainties

For this physics K`+`− may be better than
K∗`+`−, since no O7 (photon penguin)
enhancement at small q2 in K mode

[Wei et al., Belle Collaboration, PRL 103 (2009) 171801]

• BaBar and Belle should be able to set a significantly better bound

• LHCb should be able to improve it substantially
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The bound from B → K`+`−
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[Freytsis, ZL, Thaler, 0911.5355]

• Cancellation in a narrow region near the dashed line (between cot β and cot3 β terms)

• In most of the parameter space this is the best bound (then Υ(3S)→ γA0)
[BaBar, 0902.2176]
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Final comments



Anomalies on the watch list

• ASL — CP violation in
Bd,s mixing: ∼ 3σ
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• B → Kπ CP asymmetries: theoretically less clean, but very puzzling (many σ)

• In addition, there are several other measurements where improved experimental
sensitivity could unambiguously establish non-SM physics
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Conclusions

• Substantial improvements in many analyses possible using the existing data

• Few hints of discrepancies — existing data could have shown new physics, com-
pelling reasons to want a lot more data (theoretical uncertainties won’t be limiting)

• E.g., if any of the anomalies on the previous page become robust, not only is new
physics discovered, but (in case of SUSY) gauge mediation is ruled out

• Consistency of precision flavor measurements with SM is a problem for NP @ TeV

However, NP in most FCNC processes may still be >10% of the SM contributions

• Expect exciting synergies between high-pT LHC and low energy flavor physics
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Backupl slides



A personal LHCb best buy list

• After ∆ms measurement, large NP contribution to Bs mixing is still allowed
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After measurement of ∆ms 1yr nominal LHCb, σ(Sψφ)=0.03

Theory uncertainty
1σ allowed region
2σ allowed region

[ZL, Papucci, Perez, hep-ph/0604112]

• LHCb will probe Bs sector at a level comparable to Bd

• Difference of CP asymmetries, SBs→ψφ − SBs→φφ
• Bs → µ+µ− (∝ tan6 β), search for Bd → µ+µ−, other rare / forbidden decays

• 104−5 events in B → K(∗)`+`−, Bs → φγ, . . . — test Dirac structure, BSM op’s

• γ from B → DK and Bs → DsK (for α probably super-B wins)

• [Precisely measure τΛb — affects how much we trust ∆ΓBs calculation, etc.]
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And a lot more: the B factory decade

• Q: How many CP violating quantities are measured with > 3σ significance?

A: 15; B: 19; C: 23; D: 27 (with different sensitivity to new physics)
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And a lot more: the B factory decade

• Q: How many CP violating quantities are measured with > 3σ significance?

A: 15; B: 19; C: 23 (with different sensitivity to new physics)

εK, ε′K,

SψK, Sη′K, Sf0K, SπK, SK+K−K0, S3KS, Sψπ0, SD+D−, SD∗+D∗−, SD∗+D−, Sπ+π−

Aρ0K+, AηK+, Af2K+, AK+π−, AηK∗0, Aπ+π−, Aρ±π∓, ∆Cρ±π∓, aD∗±π∓, AD
CP+K−

• Just because a measurement determines a CP violating quantity, it no longer
automatically implies that it is interesting

(E.g., if Sη′K was still consistent with 0, it would be a many σ discovery of NP!)

• It doesn’t matter if one measures a side or an angle — only experimental precision
and theoretical cleanliness for interpretation for short distance physics do
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Neutral meson mixings

• Identities, neglecting CPV in mixing (not too important, surprisingly poorly known)

K : long-lived = CP -odd = heavy

D : long-lived = CP -odd (3.5σ) = light (2σ)

Bs : long-lived = CP -odd (1.5σ) = heavy in the SM

Bd : yet unknown, same as Bs in SM for mb�ΛQCD

Before 2006, we only knew experimentally the kaon line above

• We have learned a lot about meson mixings — good consistency with SM

x = ∆m/Γ y = ∆Γ/(2Γ) A = 1− |q/p|2
SM theory data SM theory data SM theory data

Bd O(1) 0.78 ys |Vtd/Vts|2 −0.005± 0.019 −(5.5± 1.5)10−4 (−4.7± 4.6)10−3

Bs xd |Vts/Vtd|2 25.8 O(−0.1) −0.05± 0.04 −Ad |Vtd/Vts|2 (0.3± 9.3)10−3

K O(1) 0.948 −1 −0.998 4 Re ε (6.6± 1.6)10−3

D < 0.01 < 0.016 O(0.01) yCP = 0.011± 0.003 < 10−4 O(0.1) bound only
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K0 –K0 mixing in supersymmetry

• (∆mK)SUSY

(∆mK)exp
∼ 104

(
1 TeV

m̃

)2 (
∆m̃2

12

m̃2

)2
Re
[
(Kd

L)12(Kd
R)12

]

Kd
L(R): mixing in gluino couplings to left-(right-)handed down quarks and squarks

For εK, replace: 104 Re
[
(Kd

L)12(Kd
R)12

]
⇒ 106 Im

[
(Kd

L)12(Kd
R)12

]

• Classes of models to suppress each factors

(i) Heavy squarks: m̃� 1 TeV (e.g., split SUSY)

(ii) Universality: ∆m2
Q̃,D̃
� m̃2 (e.g., gauge mediation)

(iii) Alignment: |(Kd
L,R)12| � 1 (e.g., horizontal symmetries)

• Has driven SUSY model building — all models incorporate some of the above

• D0 –D0 mixing discovery (BaBar & Belle, 2007) ruled out (iii) as sole explanation
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Outlook

• Measurements sensitive to scales >TeV; sensitivity limited by statistics

The non-observation of NP at Eexp ∼ mB is a problem for NP at ΛNP ∼ TeV

⇒ New physics could show up any time measurements improve

• If NP is seen: Study it in as many different operators as possible

If NP is seen: One / many sources of CPV? Only in CC interactions? NP couples
If NP is seen: mostly to up / down sector? 3rd / all generations? ∆(F ) = 2 or 1?

• If NP is not seen: Achieve what is theoretically possible
If NP is not seen: Could teach us a lot whether or not NP is seen at LHC

• Flavor physics will provide important clues to model building in the LHC era
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Looking for surprises

• Will LHC see new particles beyond a Higgs?
SUSY, something else, understand in detail?

• Will NP be seen in the quark sector?
Bs: large AsSL, βs or Bs → µ+µ−?
B: Semileptonic |Vub| and B → τν agree, in conflict with sin 2β?
D: CPV in D0–D0 mixing?

• Will NP be seen in the lepton sector?
µ→ eγ, µ→ eee, τ → µγ, τ → µµµ, ...?

• I don’t know, but I’m sure it’s worth finding out...! Want to keep looking broadly
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