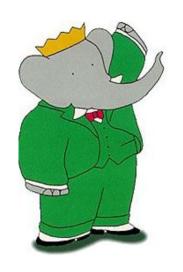
BaBar, Simba & dark matter

Zoltan Ligeti



- Status and future of flavor physics
- Improvements in inclusive $B \to X_s \gamma$ and $B \to X_u \ell \bar{\nu}$
- A somewhat unusual search in $B \to K^{(*)} \ell^+ \ell^-$

Disclaimers

• A few weeks ago when I got a phone call about the report from the intensity frontier review, I thought I'd get dis-invited and would not have to prepare this talk

Disclaimers

• A few weeks ago when I got a phone call about the report from the intensity frontier review, I thought I'd get dis-invited and would not have to prepare this talk

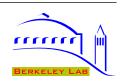
This has not happened, so I thought I should tell you my opinions

Disclaimers

 A few weeks ago when I got a phone call about the report from the intensity frontier review, I thought I'd get dis-invited and would not have to prepare this talk
 This has not happened, so I thought I should tell you my opinions

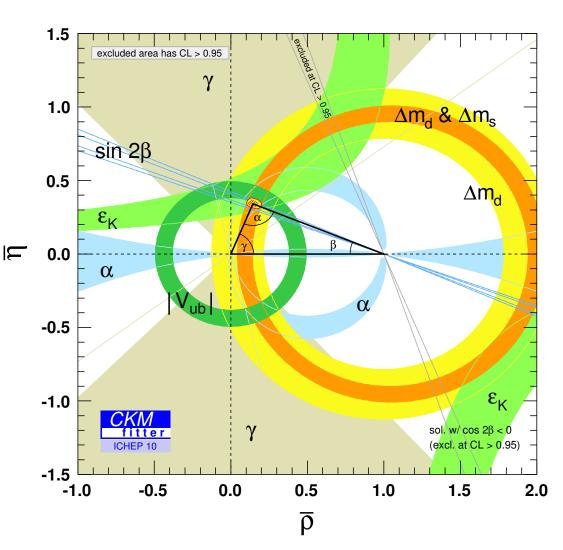
 To me it's obvious that an order of magnitude (or more) improved sensitivity to plausible new short distance physics is worth pursuing

Many people disagree... I don't get it.

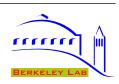


The standard model CKM fit

- Very impressive accomplishments
- The level of agreement between the measurements often misinterpreted
- Increasing the number of parameters can alter the fit completely
- Plausible TeV scale NP scenarios, consistent with all low energy data, with sizable flavor physics effects
- CKM is inevitable; the question is not if it's correct, but is it sufficient?



• It will require a lot more data to answer this question at the < 10% level



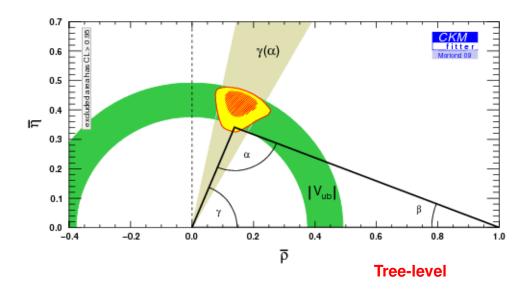
An example: new physics in $B-\overline{B}$ mixing

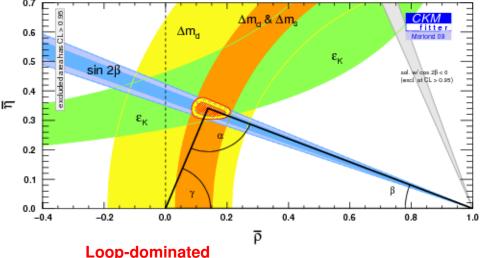
- Large class of models: (i) 3×3 CKM matrix is unitary
 - (ii) Tree-level decays dominated by SM

Two parameters for each neutral meson: $M_{12}=M_{12}^{\rm SM}(1+h\,e^{2i\sigma})=M_{12}^{\rm SM}(r_d\,e^{2i\theta_d})$

Tree-level CKM constraints unaffected

Observables sensitive to NP in mixing



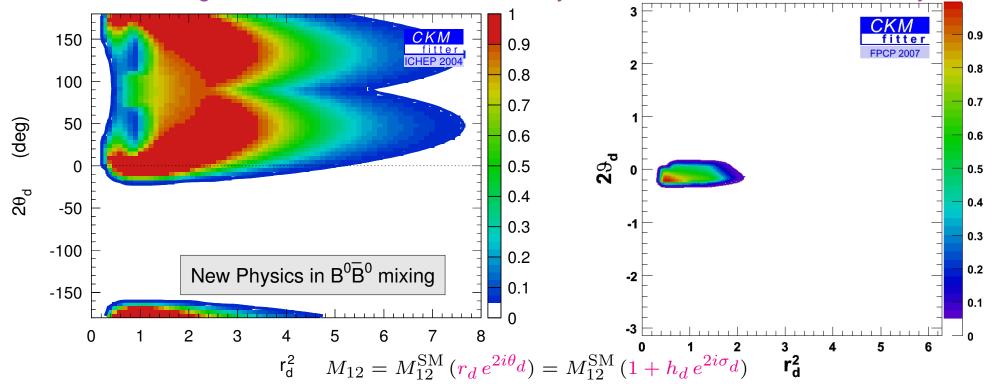


Isolating modest new physics contributions requires many measurements

The one-page summary of BaBar & Belle

 Strong constraints on NP in many FCNC amplitudes — much more progress in this and more interesting than just the uncertainties of the SM parameters

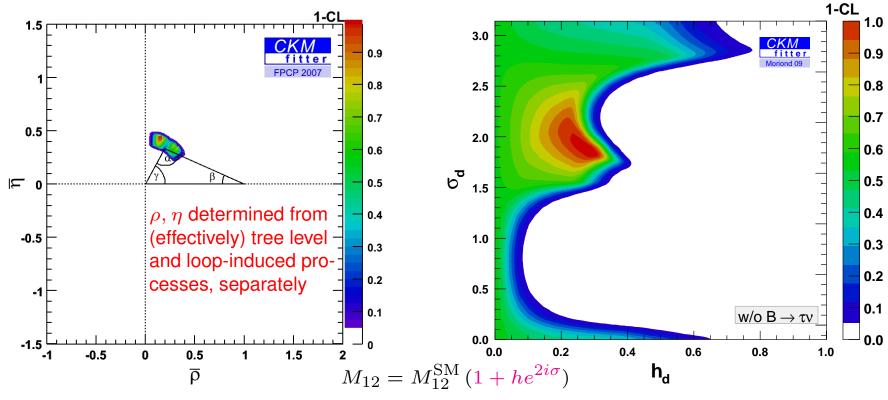
Qualitative change before vs. after 2004 — the real justification for the Nobel Prize in my mind



ullet Despite huge progress $\sim\!20\%$ NP contribution to most loop processes still allowed

Constraints on new physics in B_d^0 mixing

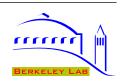
Overconstraining measurements (tree vs. loop) are crucial to bound new physics



even in the presence of NP in mixing

Only the SM-like region is allowed, $NP \sim SM$ is still allowed, approaching $NP \ll SM \text{ unless } \sigma_d = 0 \pmod{\pi/2}$

Question: How small is h? Is $h \lesssim 0.1$? [assume $h \sim (4\pi v/\Lambda_{\rm flav.})^2$ — is $\Lambda_{\rm flav.} \gg \Lambda_{\rm EWSB}$?]

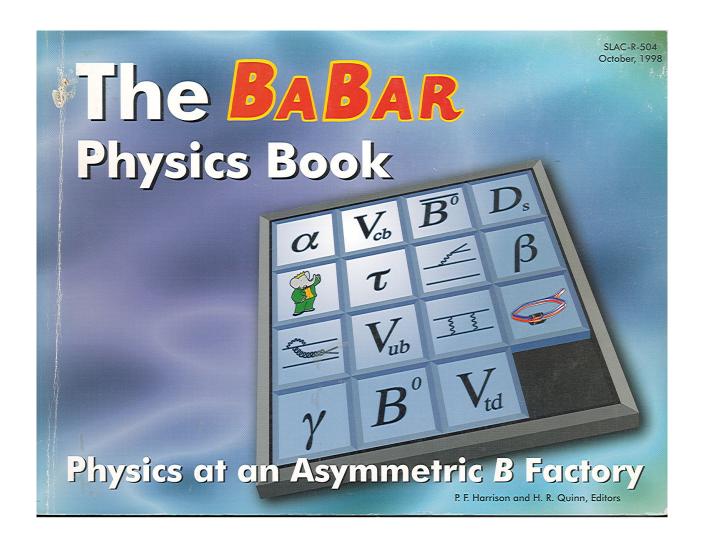


Where do we go from here?

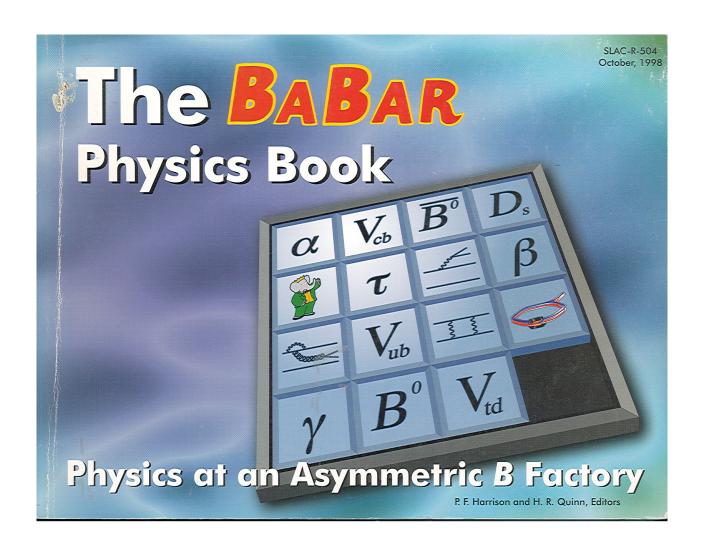
My personal super(-KEK)-B best buy list

- Want observables: (i) sensitive to different NP, (ii) measurements can improve by an order of magnitude, and (iii) not limited by hadronic uncertainties:
 - Difference of CP asymmetries, $S_{\psi K_S} S_{\phi K_S}$
 - γ from CP asymmetries in tree-level decays vs. γ from $S_{\psi K_S}$ and $\Delta m_d/\Delta m_s$
 - Search for charged lepton flavor violation, $\tau \to \mu \gamma$, $\tau \to 3\mu$, and similar modes
 - Search for CP violation in $D^0 \overline{D}{}^0$ mixing
 - ullet The CP asymmetry in semileptonic decay, $A_{
 m SL}$
 - ullet The CP asymmetry in the radiative decay, $S_{K^*\gamma}$
 - Rare decay searches and refinements: $b \to s\nu\bar{\nu}$, $B \to \tau\bar{\nu}$, etc.
- Complementary to LHCb
- Any one of these measurements has the potential to establish new physics

What was it in the BaBar Book?



What was it in the BaBar Book?



• There was no executive summary! Neither a list of gold-plated measurements...

Outline

- Pick two topics where significant progress could still come from existing data
 - Inclusive semileptonic B decays

[Bernlochner, Lacker, ZL, Stewart, Tackmann, Tackmann]

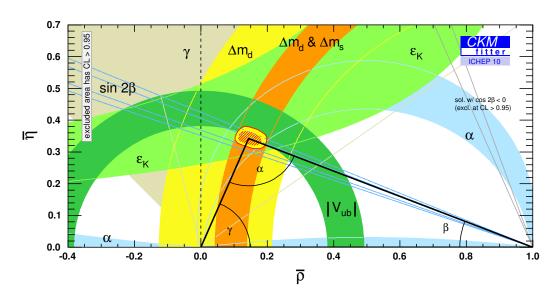
... SIMBA [= Analysis of B Meson Inclusive Spectra]

An unusual dark matter search

[Freytsis, ZL, Thaler]

- ... Bump hunting in $B \to K^{(*)} \ell^+ \ell^-$
- Conclusions

Semileptonic and rare B decays



- ullet $|V_{ub}|$ is the dominant uncertainty of the side of the UT opposite to eta
- Error of $|V_{cb}|$ is large part of the uncertainty in the ϵ_K constraint, and in $K o\pi
 uar
 u$

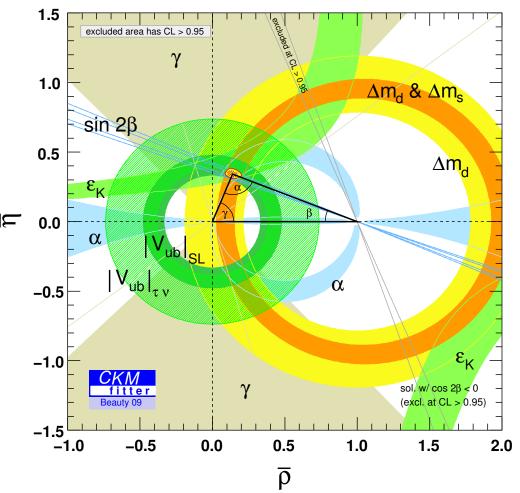
Both $|V_{cb}|$ and $|V_{ub}|$: persistent $\sim 2\sigma$ tension between inclusive & exclusive

Determination of $|V_{ub}|$ is far from settled

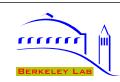
- Determined by tree-level decays
 Crucial for comparing tree-dominated and loop-mediated processes
- $|V_{ub}|_{\pi\ell\bar{\nu}-LQCD} = (3.5 \pm 0.5) \times 10^{-3}$ $|V_{ub}|_{incl-BLNP} = (4.3 \pm 0.3) \times 10^{-3}$ $|V_{ub}|_{incl-BLL} = (4.9 \pm 0.5) \times 10^{-3}$ $|V_{ub}|_{\tau\nu} = (5.2 \pm 0.5 \pm 0.4_{f_B}) \times 10^{-3}$

Fluctuation, bad theory, new physics?

SM CKM fit: $(3.54 \pm 0.18) \times 10^{-3}$

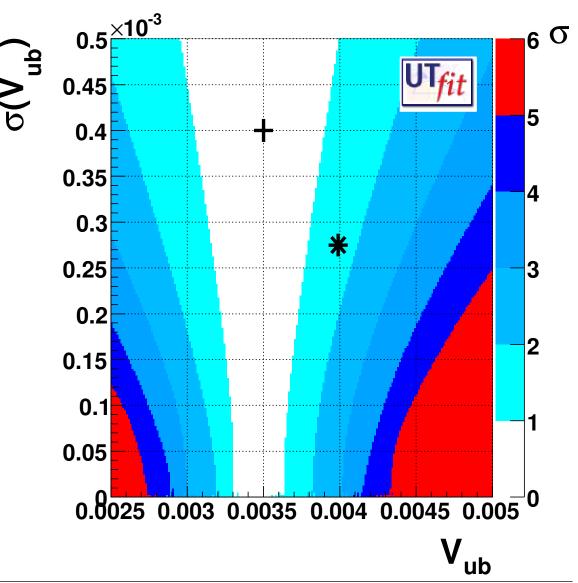


• $b \to q\gamma$, $q \ell^+\ell^-$, $q \nu \bar{\nu}$ (q=s,d) are sensitive probes of the SM; theoretical tools same as for $|V_{ub}|$ — sensitivity to NP limited by accuracy of theory



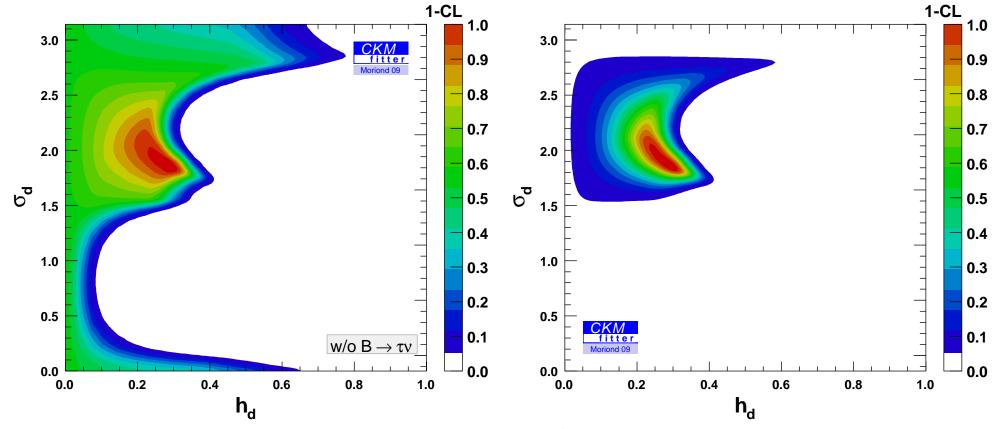
Another way of plotting $\sin 2\beta$ vs. $|V_{ub}|$

• UTfit has talked about this for several years; lingering around since 2003 or so, $\sim 2\sigma$



$|V_{ub}|$ and new physics ...

• At the present time, including $B o au ar{
u}$, the SM is "disfavored" at $> 2\sigma$

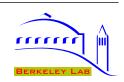


Parameterize NP in B^0 - \overline{B}^0 mixing: $M_{12}=M_{12}^{\rm SM}\left(1+h_d\,e^{2i\sigma_d}\right)$

There are NP models that would ease this "tension" (that's not the real question)

How to make sense of this?

- $B \to \pi \ell \bar{\nu}$ ("exclusive"): theory is in the hand of lattice QCD
 - I would not be too worried about QCD sum rules and other model calculations
 - Lattice QCD: f_B is simpler than q^2 -dependent form factors However, $|V_{ub}|$ from $B \to \tau \nu$ is the highest (could be experimental fluctuation)
- $B \to X_u \ell \bar{\nu}$ ("inclusive"): theoretical improvements possible
 - However, e.g., in BLNP, recently computed NNLO terms increase $|V_{ub}|$
 - Work on better combination of $B \to X_u \ell \bar{\nu}$ and $B \to X_s \gamma$
- For most of these measurements, BaBar and Belle results are consistent Statistical fluctuations possible, though results seem fairly steady...
- (My) problem: results I'd trust the least are the ones most consistent with the SM

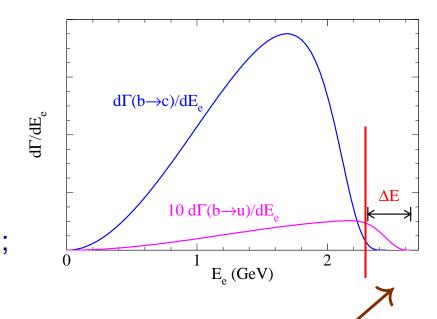


The challenge of inclusive $|V_{ub}|$ measurements

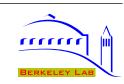
- Total rate calculable with $\sim 4\%$ uncertainty, similar to $\mathcal{B}(B \to X_c \ell \bar{\nu})$
- To remove the huge charm background $(|V_{cb}/V_{ub}|^2 \sim 100)$, need phase space cuts Can enhance pert. and nonpert. corrections
- Instead of being constants, the hadronic parameters become functions (like PDFs)

 Leading order: universal & related to $B \to X_s \gamma$;

 $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$: several new unknown functions



- Nonperturbative effects shift endpoint $\frac{1}{2} m_b \to \frac{1}{2} m_B$ & determine its shape
- Shape in the endpoint region is determined by b quark PDF in B ["shape function"] Related to $B \to X_s \gamma$ photon spectrum at lowest order [Bigi, Shifman, Uraltsev, Vainshtein; Neubert]



Astonishing calculations: $B o X_s \gamma$ rate

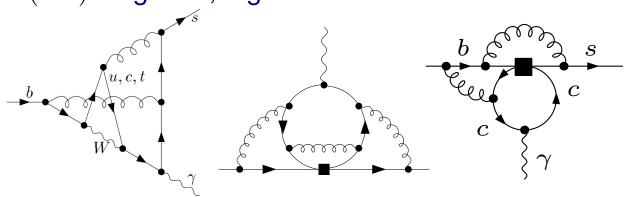
- One (if not "the") most elaborate SM calculations
 Constrains many models: 2HDM, SUSY, LRSM, etc.
- NNLO practically completed [Misiak et al., hep-ph/0609232]
 4-loop running, 3-loop matching and matrix elements

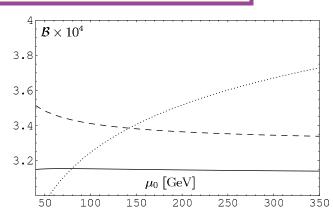
Scale dependencies significantly reduced ⇒

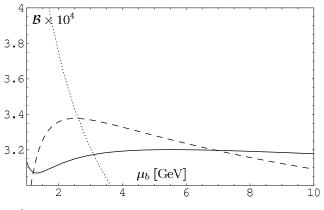
• $\mathcal{B}(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$

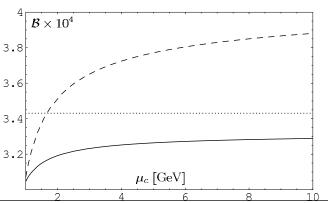
experiment: $(3.55 \pm 0.26) \times 10^{-4}$

 $\mathcal{O}(10^4)$ diagrams, e.g.:









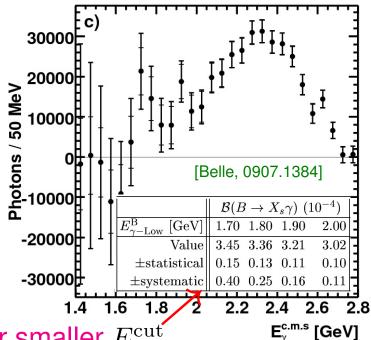
Regions of $B o X_s \gamma$ photon spectrum

- Important both for $|V_{ub}|$ and constraining NP
- ullet The peak is around $E_{\gamma} \sim 2.3\,{
 m GeV}$

Three cases: 1) $\Lambda_{
m QCD} \sim m_B - 2 E_\gamma \ll m_B$ ["SCET"]

- 2) $\Lambda_{
 m QCD} \ll m_B 2E_\gamma \ll m_B$ ["MSOPE"]
- 3) $\Lambda_{\rm QCD} \ll m_B 2E_\gamma \sim m_B$

Expansions and theory uncertainties differ in the 3 regions Neither 1) nor 2) is fully appropriate



- ullet Experimental systematic error rapidly increases for smaller $E_{\gamma}^{\mathrm{cut}}$
- ullet Current practice: Compare rate extrapolated to $1.6\,\mathrm{GeV}$ with theoretical prediction

Con: (i) extrapolation uses theory, so comparison of theory and data is effectively done at the measured values; (ii) best use of the most precise measurements?

Advantages of a global fit

 Optimally combine all information, while consistently treating the uncertainties and their correlations (experimental, theoretical, parameters)

Simultaneously determine:

- Overall normalization: $\mathcal{B}(B \to X_s \gamma)$, $|V_{ub}|$
- Parameters: m_b , shape function(s)

• Utilize all measurements:

- Different $B \to X_s \gamma$ spectra, or partial rates
- Different $B \to X_u \ell \bar{\nu}$ spectra, or partial rates
- Eventually also $B \to X_s \ell^+ \ell^-$
- Include other constraints on m_b , λ_1 , etc.
- Same strategy as for $|V_{cb}|$, just a bit more complicated...

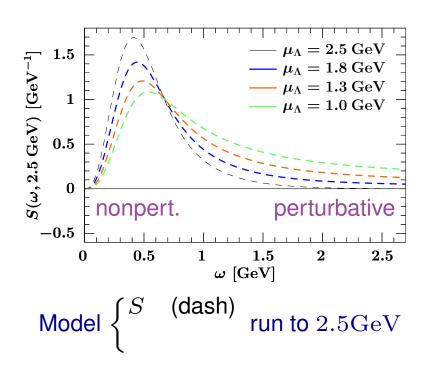
The shape function (b quark PDF in B)

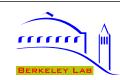
lacktriangle The shape function $S(\omega,\mu)$ contains nonperturbative physics and obeys a RGE

If $S(\omega, \mu_{\Lambda})$ has exponentially small tail, but RGE running gives a long tail and divergent moments [Balzereit, Mannel, Kilian]

$$S(\omega, \mu_i) = \int d\omega' \, U_S(\omega - \omega', \mu_i, \mu_\Lambda) \, S(\omega', \mu_\Lambda)$$

Constraint: moments (OPE) + $B \rightarrow X_s \gamma$ shape How to combine these?





The shape function (b quark PDF in B)

ullet The shape function $S(\omega,\mu)$ contains nonperturbative physics and obeys a RGE

If $S(\omega, \mu_{\Lambda})$ has exponentially small tail, but RGE running gives a long tail and divergent moments [Balzereit, Mannel, Kilian]

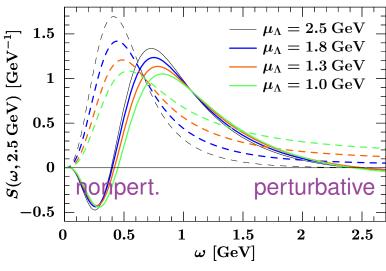
$$S(\omega, \mu_i) = \int d\omega' \, U_S(\omega - \omega', \mu_i, \mu_\Lambda) \, S(\omega', \mu_\Lambda)$$

Constraint: moments (OPE) + $B \rightarrow X_s \gamma$ shape How to combine these?

- Consistent setup at any order, in any scheme
- Stable results for varying μ_{Λ} (SF modeling scale, must be part of uncert.)
- Similar to how all matrix elements are defined e.g., $B_K(\mu) = \widehat{B}_K \times [\alpha_s(\mu)]^{2/9} (1 + ...)$

Derive: [ZL, Stewart, Tackmann, 0807.1926]

$$S(\omega, \mu_{\Lambda}) = \int dk \, C_0(\omega - k, \mu_{\Lambda}) F(k)$$



Consistent to impose moment constraints on F(k), but not on $S(\omega, \mu_{\Lambda})$ w/o cutoff

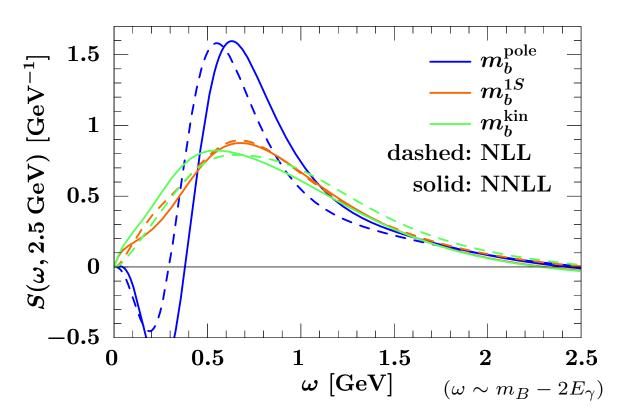
Changing schemes: m_b

- ullet Going to a short distance mass scheme removes the dip at small ω
- Want to define short distance (hatted) quantities such that:

$$S(\omega) = \int dk \, C_0(\omega - k) \, F(k)$$
$$= \int dk \, \widehat{C}_0(\omega - k) \, \widehat{F}(k)$$

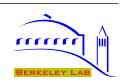
Switch from pole to short distance scheme:

$$m_b = \widehat{m}_b + \delta m_b$$
$$\lambda_1 = \widehat{\lambda}_1 + \delta \lambda_1$$



$$\widehat{C}_0(\omega) = C_0(\omega + \delta m_b) - \frac{\delta \lambda_1}{6} \frac{\mathrm{d}^2}{\mathrm{d}\omega^2} C_0(\omega) = \left[1 + \delta m_b \frac{\mathrm{d}}{\mathrm{d}\omega} + \left(\frac{(\delta m_b)^2}{2} - \frac{\delta \lambda_1}{6} \right) \frac{\mathrm{d}^2}{\mathrm{d}\omega^2} \right] C_0(\omega)$$

• Can use any short distance mass scheme (1S, kinetic, PS, shape function, ...)



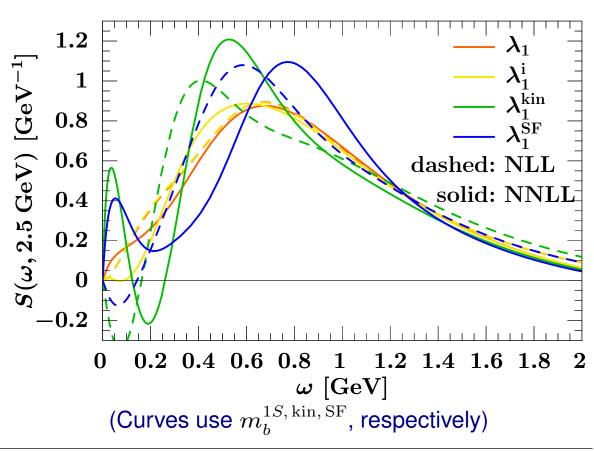
Changing schemes: λ_1

• "Invisible" renormalon in λ_1 at $\mathcal{O}(\alpha_s^2)$? \Rightarrow kinetic and SF schemes for λ_1

• Introduce invisible scheme: $\lambda_1^{\rm i} = \lambda_1 - 0\alpha_s - R^2 \frac{\alpha_s^2(\mu)}{\pi^2} \frac{C_F C_A}{4} \left(\frac{\pi^2}{3} - 1\right)$ $(R = 1 \, {\rm GeV})$

• The kinetic and shape function scheme definitions oversubtract $(-\mu_\pi^2 \equiv \lambda_1^{\rm kin,\,SF})$

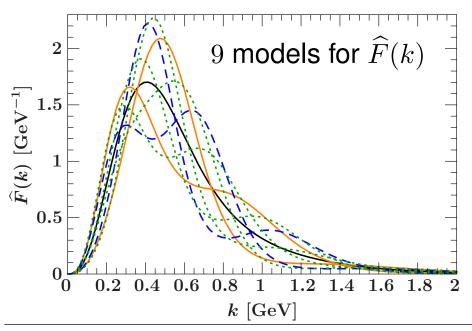
... similar to $\overline{m}_b(\overline{m}_b)$ issues



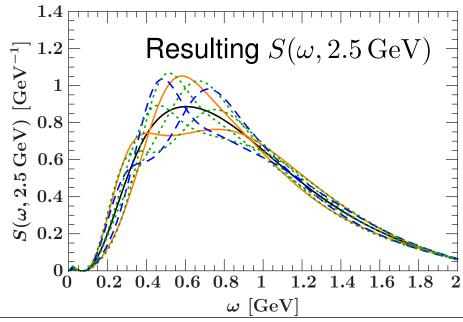
Shape function: the bottom line

$$S(\omega, \mu_{\Lambda}) = \int dk \, \widehat{C}_0(\omega - k, \mu_{\Lambda}) \, \widehat{F}(k)$$

 \widehat{F} : nonperturbative determines peak region well-defined moments fit from data

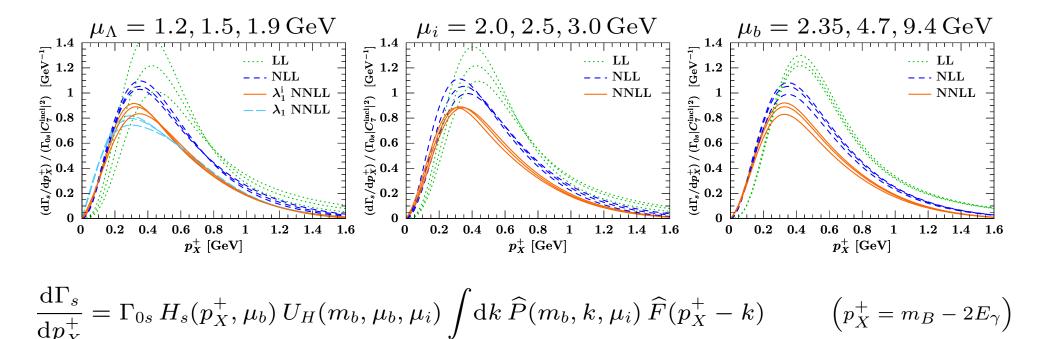


 \widehat{C}_0 : perturbative generates tail consistent with RGE divergent moments calculable



Scale (in)dependence of $B o X_s \gamma$ spectrum

Dependence on 3 scales in the problem can be handled appropriately:



 $\widehat{P},\,\widehat{F}$ indicate use of short distance schemes: m_b^{1S} and λ_1^{i}

• In other approaches, using models for $S(\omega, \mu_{\Lambda})$ run up to μ_i , dependence on μ_{Λ} ignored so far, but it must be considered an uncertainty \Rightarrow This is how to solve it

Designer orthonormal functions

Devise suitable orthonormal basis functions

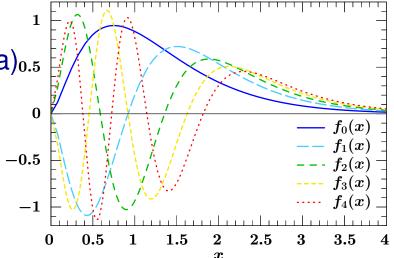
 (earlier: fit parameters of model functions to data)_{0.5}

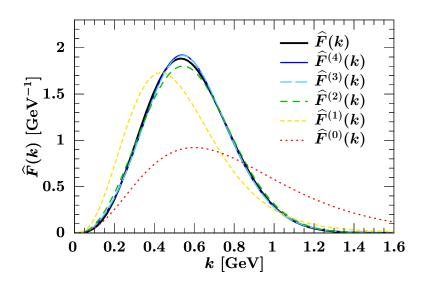
$$\widehat{F}(\lambda x) = \frac{1}{\lambda} \big[\sum c_n f_n(x) \big]^2$$
, $n \text{ th moment } \sim \Lambda_{\text{QCD}}^n$ $f_n(x) \sim P_n[y(x)] \leftarrow \text{Legendre polynomials}$

Better to add a new term in an orthonormal basis than a new parameter to a model:

- less parameter correlations
- errors easier to quantify

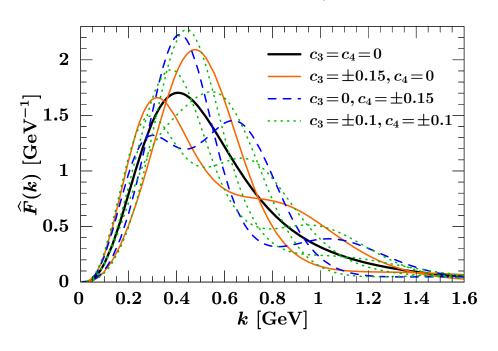
"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." (John von Neumann)

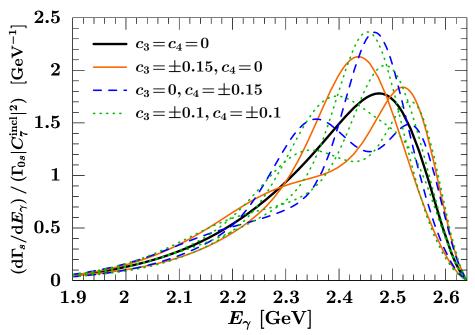




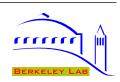
The $B o X_s \gamma$ spectrum again

Same 9 models as before (fixed 0th, 1st, 2nd moments), and the resulting spectra





- At NNLL: Shape in peak region not determined at all by first few moments $\text{Perturbative tail of shape function starts to dominate for } E_{\gamma} \lesssim 2.1 \, \mathrm{GeV}$
- Not shown: subleading shape functions, subleading corrections not in $C_7^{
 m incl}$, kinematic power corrections, boost to $\Upsilon(4S)$ frame



Details of fitting the data

- ullet $\widehat{F}(k)$ enters the spectra linearly
 - \Rightarrow can calculate independently the contribution of $f_m f_n$ in the expansion of $\widehat{F}(k)$:

$$\mathrm{d}\Gamma = \sum c_m c_n \, \mathrm{d}\Gamma_{mn}$$
 fit compute

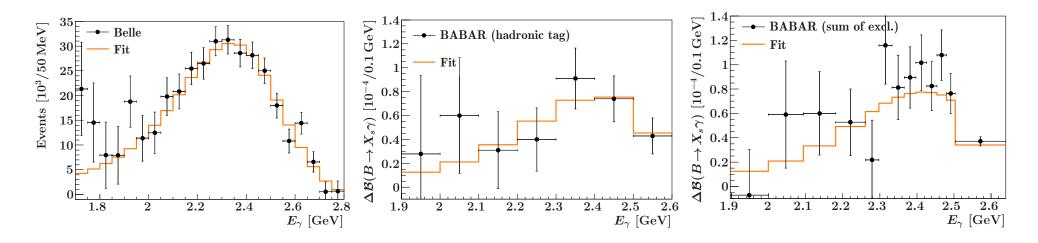
$$\mathrm{d}\Gamma_{mn} = \Gamma_0 \, H(p_X^\pm) \int_0^{p_X^+} \mathrm{d}k \, \frac{\widehat{P}(p^-,k)}{\lambda} \, \underbrace{f_m\!\!\left(\frac{p_X^+ - k}{\lambda}\right) f_n\!\!\left(\frac{p_X^+ - k}{\lambda}\right)}_{\text{basis functions}} f_n\!\!\left(\frac{p_X^+ - k}{\lambda}\right)$$

Fit the c_i coefficients from all measured (binned) spectra (similar to $|V_{cb}|$ fit)

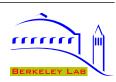
- SIMBA includes: [all plots preliminary]
 - Simultaneous fit using all available information
 - Correlations in data, propagation of SF uncertainties
 - Validate the fits with pseudo-experiments
 - Check model independence by varying number of basis functions in fit (up to 5)



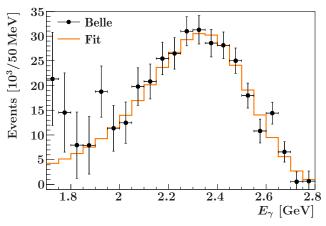
Fits results for $B o X_s \gamma$

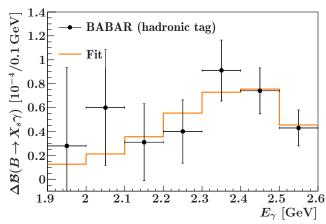


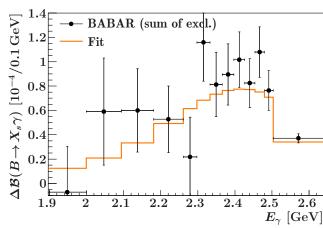
- Belle: 605 fb⁻¹ they provided the covariance matrix, experimental efficiency, and resolution (latter two folded into theory prediction)
- BaBar: hadronic tag (210 fb⁻¹) and sum over exclusive modes (80 fb⁻¹) (spectra efficiency corrected, resolution not an issue)
 leptonic tag data cannot (yet) be included



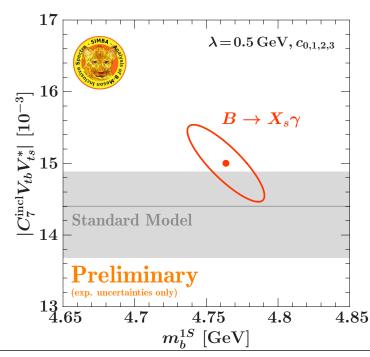
Fits results for $B o X_s \gamma$



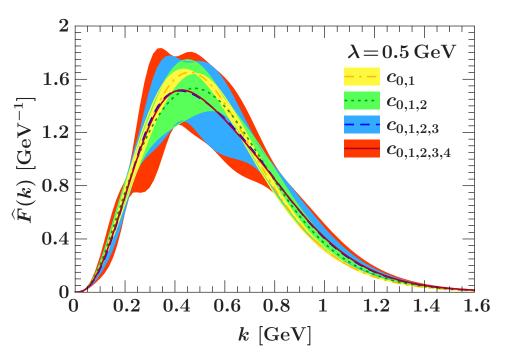


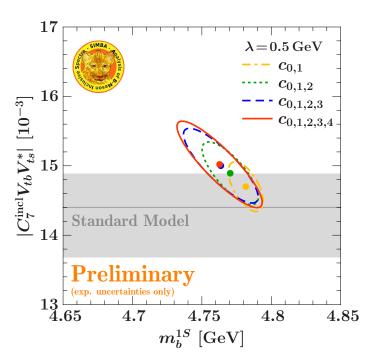


- $\chi^2/\text{ndf} = 27.0/38$
- SM prediction: $\left|C_7^{\rm incl}\right|^{\rm SM} = 0.354^{+0.011}_{-0.012}$ $\left|V_{tb}V_{ts}\right| = (40.7^{+0.4}_{-0.5}) \times 10^{-3}$
- Fit result: $|C_7^{\rm incl} V_{tb} V_{ts}| = (15.00 \pm 0.54_{\rm exp}) \times 10^{-3}$
- Data slightly above SM prediction, as in HFAG combination vs. Misiak et al.



Convergence of basis expansion





- Uncertainties underestimated with too few coefficients
 - Would need to estimate / include additional uncertainty from truncation
- Little change in going from $4 \rightarrow 5$ basis functions
 - Truncation uncertainty negligible compared to other uncertainties
- Also varied λ to check basis independence (change form of basis functions)

$B o X_u \ellar u$ is more complicated

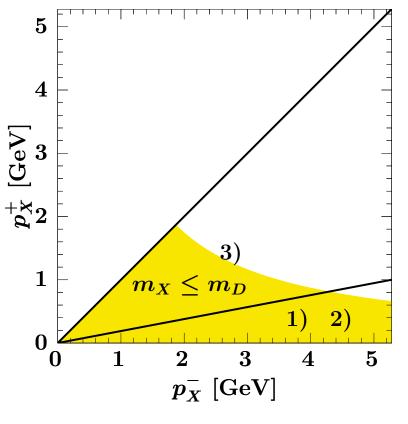
• "Natural" kinematic variables: $p_X^{\pm}=E_X\mp |\vec{p}_X|$ — "jettiness" of hadronic final state $B\to X_s\gamma$: $p_X^+=m_B-2E_\gamma$ & $p_X^-\equiv m_B$, but independent variables in $B\to X_u\ell\bar{\nu}$

• Three cases: 1)
$$\Lambda \sim p_X^+ \ll p_X^-$$
 2) $\Lambda \ll p_X^+ \ll p_X^-$ SF region

3)
$$\Lambda \ll p_X^+ \sim p_X^-$$
 local OPE region

Want to make no assumptions how p_X^- compares to m_B

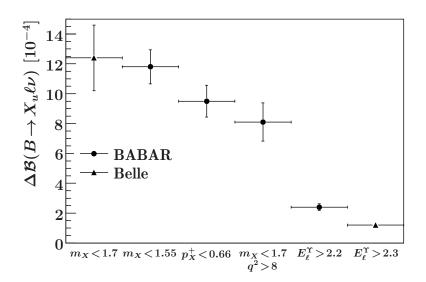
• $B \to X_u \ell \bar{\nu}$: 3-body final state, appreciable rate in region 3), where hadronic final state not jet-like E.g., $m_X^2 < m_D^2$ does not imply $p_X^+ \ll p_X^-$

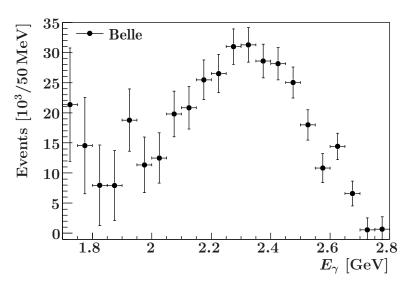


Existing approaches based on theory in one region, extrapolated / modeled to rest

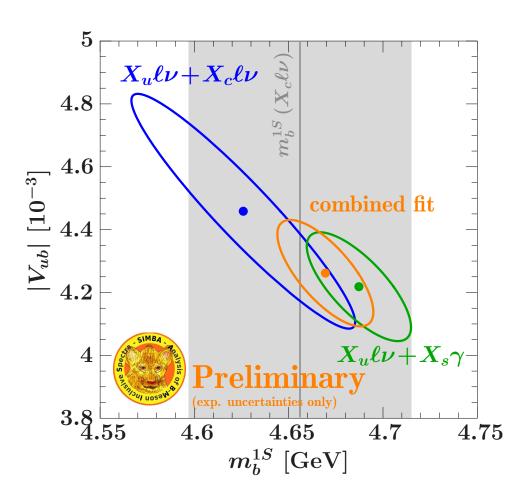
Even more preliminary — $|V_{ub}|$

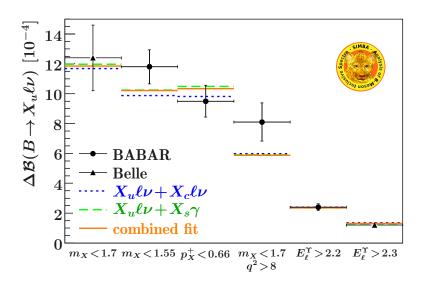
- $B \to X_u \ell \bar{\nu}$ hadronic tag
 - BaBar m_X , m_X - q^2 , p_X^+
 - Belle m_X
- $B \to X_u \ell \bar{\nu}$ lepton endpoint
 - BaBar $E_{\ell}^{\Upsilon} > 2.2 \,\mathrm{GeV}$
 - Belle $E_{\ell}^{\Upsilon} > 2.3 \,\mathrm{GeV}$
- $B \to X_s \gamma$ spectra
 - Belle latest result (shown)
 - BaBar sum over exclusive + hadronic tag
- m_b^{1S} , λ_1 from $B \to X_c \ell \bar{\nu}$ fit
 - $-m_b^{1S} = (4.66 \pm 0.05) \,\mathrm{GeV}$
 - $-\lambda_1 = (-0.34 \pm 0.05) \,\mathrm{GeV}^2$

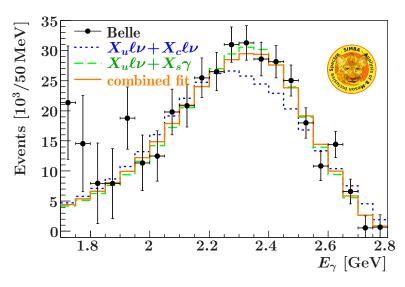


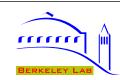


Even more preliminary — $|V_{ub}|$









If all else fails: "Grinstein-type double ratios"

- Continuum theory may be competitive using HQS + chiral symmetry suppression
- $\frac{f_B}{f_{Bs}} \times \frac{f_{Ds}}{f_D}$ lattice: double ratio = 1 within few %

[Grinstein '93]

 $\qquad \qquad \frac{f^{(B \to \rho \ell \bar{\nu})}}{f^{(B \to K^* \ell^+ \ell^-)}} \times \frac{f^{(D \to K^* \ell \bar{\nu})}}{f^{(D \to \rho \ell \bar{\nu})}} \ \, \text{or} \, \, q^2 \, \, \text{spectra} \, \, -\! \, \text{accessible soon?}$

[ZL, Wise; Grinstein, Pirjol]

 $D \to \rho \ell \bar{\nu}$ data still consistent with no SU(3) breaking in form factors

[ZL, Stewart, Wise]

Could lattice QCD do more to pin down the corrections?

Worth looking at similar ratio with K, π — role of B^* pole...?

• $\frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})}$ — very clean... after 2016?

[Ringberg workshop, '03]

• $\frac{\mathcal{B}(B_u \to \ell \bar{\nu})}{\mathcal{B}(B_d \to \mu^+ \mu^-)}$ — even cleaner... around 2020?

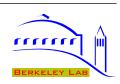
[Grinstein, CKM'06]

Also useful for probing SUSY parameter space

[Akeroyd, Mahmoudi, 1007.2757]

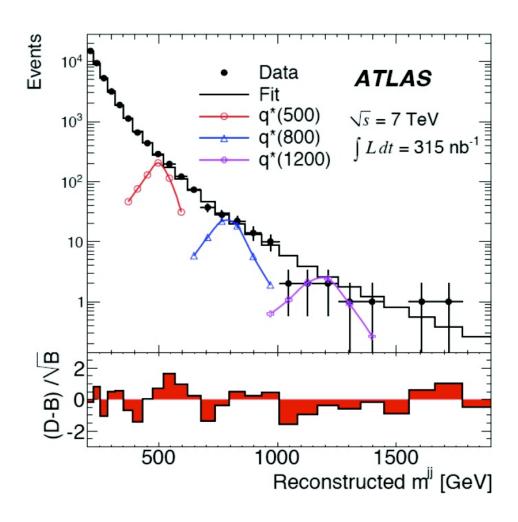
Summary: inclusive $B o X_s \gamma$ and $|V_{ub}|$

- Qualitatively better analyses are possible than those implemented so far
 - Fitting F(k) instead of modeling $S(\omega, \mu)$
 - Designer orthonormal functions reduce role of shape function modeling
 - Fully consistent combination of all phase space regions
 - Decouple SF shape variation from m_b variation
- Progress can be made using current data:
 - Combine all $B \to X_s \gamma, X_u \ell \bar{\nu}, X_c \ell \bar{\nu}$ data to constrain short distance physics & SFs Need spectra & correlations; so far we had to rely more on Belle than BaBar data
- Refining $|V_{ub}|$ will remain important to constrain new physics in $B^0-\overline{B}^0$ mixing (Uncomfortable $\sim\!2\sigma$ tensions, PDG in 2008 inflated error for the first time) Recently Λ_b lifetime and $\Gamma(D_s\to X\ell\bar\nu)$ taught us about what the resolution is not
- $|V_{ub}|$ is tricky: to draw conclusions about new physics, we'll want ≥ 2 extractions with different uncertainties to agree well (inclusive, exclusive, leptonic)

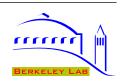


Dark matter in $B o K^{(*)} \ell^+ \ell^-$?

Bump hunting: not only for ATLAS & CMS...



(The first LHC result superseding Tevatron limits)



Dark matter

- Recent observations of cosmic ray excesses led to a flurry of DM model building
 Standard WIMPs unable to fit the data (lack of antiprotons, hard lepton spectrum)
- An idea: DM annihilates to SM through light bosons [Pospelov, Ritz, Voloshin; Arkani-Hamed et al.]

$$\chi \chi \to \phi^{(*)} \phi^{(*)}, \qquad \phi \to \ell^+ \ell^-, \, \pi^+ \pi^-, \, \dots$$

"Dark bosons" couple to leptons with $\alpha_X = \lambda_X^2/(4\pi)$, lots of different constraints depending on mass and coupling

• Most popular scenario: ϕ^{μ} couples to $\bar{\psi}\gamma_{\mu}\psi$ and mixes with γ ("dark photons") ... other viable models also exist

A lot of the constraints and phenomenology was worked out here at SLAC

The axion portal

The new particle could also be a scalar with axion-like couplings [Nomura, Thaler, 0810.5397]

$$\mathcal{L}_{\text{int}} = \frac{\lambda}{f_a} \left(\bar{\psi} \gamma^{\mu} \gamma_5 \psi \right) \partial_{\mu} a \quad \rightarrow \quad \frac{\lambda \, m_{\psi}}{f_a} \left(\bar{\psi} \gamma_5 \psi \right) a$$

The most interesting part of parameter space is thought to be:

$$m_K - m_\pi < m_a \lesssim 800 \,\text{MeV}, \qquad f_a \sim (1-3) \,\text{TeV}$$

- Coupling to fermions $\propto m_{\psi}$, so FCNC $b \to sa$ loops are enhanced by m_t With only $\mathcal{L}_{\mathrm{int}}$, divergent loops \Rightarrow need to embed in a renormalizable theory
- A simple explicit model: Peccei-Quinn symmetric NMSSM (2HDM + a singlet)
 (SUSY part not directly relevant for us, more general DFSZ-axion)
- At one loop: $\mathcal{M}(b \to sa) \propto \mathcal{M}(b \to sA^0)_{\mathrm{2HDM}}$ (from tW, tH, tHW penguins)

The 2HDM calculation

[Hall and Wise, NPB 187 (1981) 397]

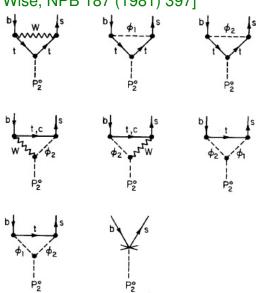


Fig. 2. Feynman diagrams contributing to the b -s P2 amplitude at one-loop.

in both models I and II. The functions $F_i(m, M_{\phi_2}, M_W)$ are

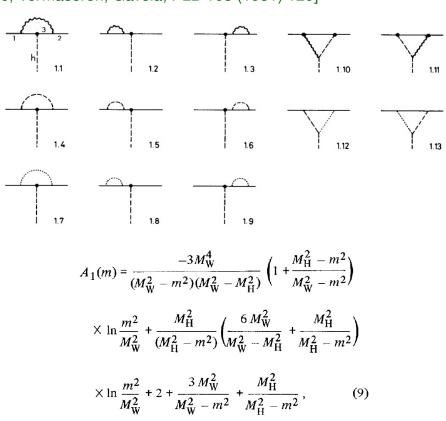
$$F_{1}(m, M_{\phi_{2}}, M_{W}) = \left(\frac{M_{W}^{2} - \frac{1}{2}m^{2}}{M_{W}^{2} - m^{2}}\right) \left(\frac{M_{W}^{2}}{M_{W}^{2} - m^{2}} \ln\left(\frac{M_{W}^{2}}{m^{2}}\right) - 1\right)$$

$$+ \frac{2M_{W}^{2}}{M_{W}^{2} - M_{\phi_{2}}^{2}} \left(\frac{M_{\phi_{2}}^{2}}{M_{\phi_{2}}^{2} - m^{2}} \ln\left(\frac{M_{\phi_{2}}^{2}}{m^{2}}\right) - \frac{M_{W}^{2}}{M_{W}^{2} - m^{2}} \ln\left(\frac{M_{W}^{2}}{m^{2}}\right)\right)$$

$$+ \frac{1}{2}(M_{W}^{2} - M_{\phi_{2}}^{2}) \left(\frac{-M_{\phi_{2}}^{2}}{(M_{W}^{2} - M_{\phi_{2}}^{2})(M_{\phi_{2}}^{2} - m^{2})} + \frac{M_{W}^{2}M_{\phi_{2}}^{2}}{(M_{W}^{2} - m^{2})(M_{W}^{2} - M_{\phi_{2}}^{2})^{2}} \ln\left(\frac{M_{W}^{2}}{M_{\phi_{2}}^{2}}\right) + \frac{1}{2} \frac{m^{2}}{(M_{W}^{2} - m^{2})(M_{\phi_{2}}^{2} - m^{2})} + \frac{1}{2} \frac{M_{W}^{2}}{(M_{W}^{2} - m^{2})(M_{\phi_{2}}^{2} - m^{2})^{2}} \ln\left(\frac{M_{W}^{2}}{m^{2}}\right) + \frac{1}{2} \frac{M_{W}^{2}}{(M_{W}^{2} - M_{\phi_{2}}^{2})(M_{W}^{2} - m^{2})^{2}} \ln\left(\frac{M_{W}^{2}}{m^{2}}\right) - \frac{1}{2} \frac{M_{\phi_{2}}^{4}}{(M_{W}^{2} - M_{\phi_{2}}^{2})(M_{W}^{2} - m^{2})^{2}} \ln\left(\frac{M_{\phi_{2}}^{2}}{m^{2}}\right),$$

$$(17)$$

[Frere, Vermaseren, Gavela, PLB 103 (1981) 129]



- Results disagree, neither knew about other
- Many papers cited both, none commented on disagreement... so we computed it all...



The current data

Considering the combined BaBar/Belle rate measurement and the spectra...

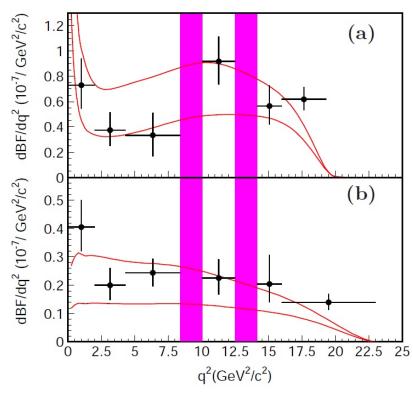
we used: $\mathcal{B}(B \to Ka) \times \mathcal{B}(a \to \mu^+\mu^-) < 10^{-7}$

[at a high, but who-knows-what CL...]

Can improve independent of form factor uncertainties

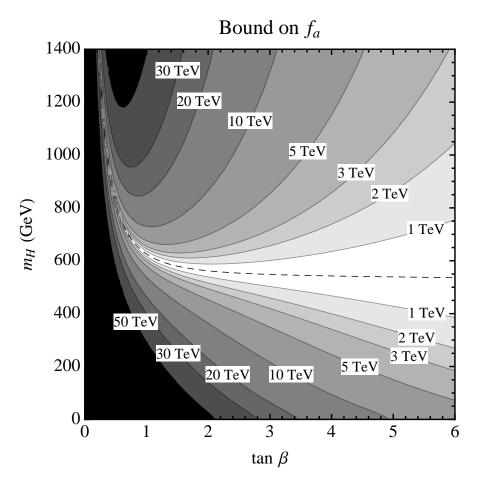
For this physics $K\ell^+\ell^-$ may be better than $K^*\ell^+\ell^-$, since no O_7 (photon penguin) enhancement at small q^2 in K mode

[Wei et al., Belle Collaboration, PRL 103 (2009) 171801]



- BaBar and Belle should be able to set a significantly better bound
- LHCb should be able to improve it substantially

The bound from $B o K \ell^+ \ell^-$



[Freytsis, ZL, Thaler, 0911.5355]

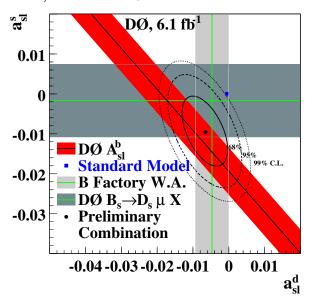
- Cancellation in a narrow region near the dashed line (between $\cot \beta$ and $\cot^3 \beta$ terms)
- In most of the parameter space this is the best bound

(then
$$\Upsilon(3S) \to \gamma A^0$$
) [BaBar, 0902.2176]

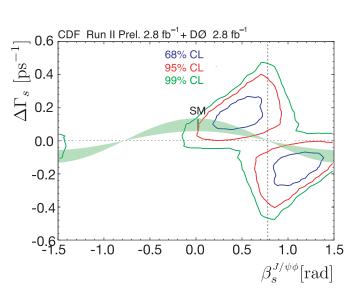
Final comments

Anomalies on the watch list

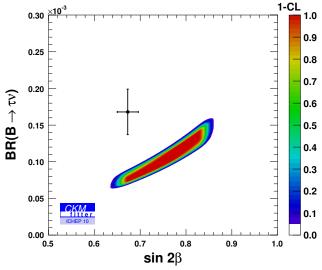
• $A_{\rm SL}$ — CP violation in $B_{d,s}$ mixing: $\sim 3\sigma$



sured in $B_s \to \psi \phi$: $\sim 2\sigma$



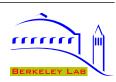
 β_s — analog of β , mea- $\mathcal{B}(B \to \tau \nu)$ — above the SM prediction: $\sim 2.5\sigma$



- $B \to K\pi \ CP$ asymmetries: theoretically less clean, but very puzzling (many σ)
- In addition, there are several other measurements where improved experimental sensitivity could unambiguously establish non-SM physics

Conclusions

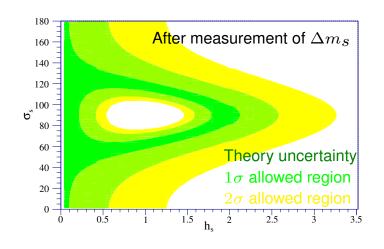
- Substantial improvements in many analyses possible using the existing data
- Few hints of discrepancies existing data could have shown new physics, compelling reasons to want a lot more data (theoretical uncertainties won't be limiting)
- E.g., if any of the anomalies on the previous page become robust, not only is new physics discovered, but (in case of SUSY) gauge mediation is ruled out
- Consistency of precision flavor measurements with SM is a problem for NP @ TeV However, NP in most FCNC processes may still be > 10% of the SM contributions
- Expect exciting synergies between high- p_T LHC and low energy flavor physics

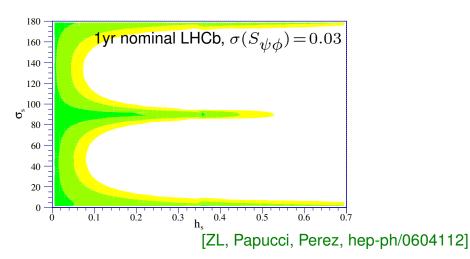


Backup slides

A personal LHCb best buy list

lacktriangle After Δm_s measurement, large NP contribution to B_s mixing is still allowed





- ullet LHCb will probe B_s sector at a level comparable to B_d
 - Difference of CP asymmetries, $S_{B_s \to \psi \phi} S_{B_s \to \phi \phi}$
 - $B_s \to \mu^+ \mu^-$ ($\propto \tan^6 \beta$), search for $B_d \to \mu^+ \mu^-$, other rare / forbidden decays
 - 10^{4-5} events in $B \to K^{(*)}\ell^+\ell^-$, $B_s \to \phi\gamma$, ... test Dirac structure, BSM op's
 - γ from $B \to DK$ and $B_s \to D_s K$ (for α probably super-B wins)
 - [Precisely measure τ_{Λ_b} affects how much we trust $\Delta\Gamma_{B_s}$ calculation, etc.]

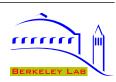


And a lot more: the B factory decade

• Q: How many CP violating quantities are measured with $> 3\sigma$ significance?

A: 15; B: 19; C: 23; D: 27

(with different sensitivity to new physics)



And a lot more: the B factory decade

• Q: How many CP violating quantities are measured with $> 3\sigma$ significance?

C: 23

(with different sensitivity to new physics)

$$\epsilon_{K}, \epsilon_{K}',$$

$$S_{\psi K}, S_{\eta' K}, S_{f_{0}K}, S_{\pi K}, S_{K^{+}K^{-}K^{0}}, S_{3K_{S}}, S_{\psi \pi^{0}}, S_{D^{+}D^{-}}, S_{D^{*+}D^{*-}}, S_{D^{*+}D^{-}}, S_{\pi^{+}\pi^{-}}$$

$$A_{\rho^{0}K^{+}}, A_{\eta K^{+}}, A_{f_{2}K^{+}}, A_{K^{+}\pi^{-}}, A_{\eta K^{*0}}, A_{\pi^{+}\pi^{-}}, A_{\rho^{\pm}\pi^{\mp}}, \Delta C_{\rho^{\pm}\pi^{\mp}}, a_{D^{*\pm}\pi^{\mp}}, A_{D_{CP^{+}K^{-}}}$$

 Just because a measurement determines a CP violating quantity, it no longer automatically implies that it is interesting

(E.g., if $S_{\eta'K}$ was still consistent with 0, it would be a many σ discovery of NP!)

 It doesn't matter if one measures a side or an angle — only experimental precision and theoretical cleanliness for interpretation for short distance physics do

Neutral meson mixings

Identities, neglecting CPV in mixing (not too important, surprisingly poorly known)

 $K: \mathsf{long}\mathsf{-lived} = CP\mathsf{-odd} = \mathsf{heavy}$

 $D: \mathsf{long}\mathsf{-lived} = CP\mathsf{-odd}\ (3.5\sigma) = \mathsf{light}\ (2\sigma)$

 B_s : long-lived = CP-odd (1.5σ) = heavy in the SM

 B_d : yet unknown, same as B_s in SM for $m_b\!\gg\!\Lambda_{
m QCD}$

Before 2006, we only knew experimentally the kaon line above

We have learned a lot about meson mixings — good consistency with SM

	$x = \Delta m/\Gamma$		$y = \Delta\Gamma/(2\Gamma)$		$A = 1 - q/p ^2$	
	SM theory	data	SM theory	data	SM theory	data
$\overline{B_d}$	$\mathcal{O}(1)$	0.78	$y_s V_{td}/V_{ts} ^2$	-0.005 ± 0.019	$-(5.5 \pm 1.5)10^{-4}$	$(-4.7 \pm 4.6)10^{-3}$
B_s	$x_d V_{ts}/V_{td} ^2$	25.8	$\mathcal{O}(-0.1)$	-0.05 ± 0.04	$-A_d \left V_{td} / V_{ts} \right ^2$	$(0.3 \pm 9.3)10^{-3}$
\overline{K}	$\mathcal{O}(1)$	0.948	-1	-0.998	$4\operatorname{Re}\epsilon$	$(6.6 \pm 1.6)10^{-3}$
\overline{D}	< 0.01	< 0.016	$\mathcal{O}(0.01)$	$y_{CP} = 0.011 \pm 0.003$	$< 10^{-4}$	$\mathcal{O}(0.1)$ bound only

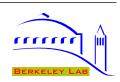
K^0 – \overline{K}^0 mixing in supersymmetry

•
$$\frac{(\Delta m_K)^{\text{SUSY}}}{(\Delta m_K)^{\text{exp}}} \sim 10^4 \left(\frac{1 \text{ TeV}}{\tilde{m}}\right)^2 \left(\frac{\Delta \tilde{m}_{12}^2}{\tilde{m}^2}\right)^2 \text{Re}\left[(K_L^d)_{12}(K_R^d)_{12}\right]$$

 $K^d_{L(R)}$: mixing in gluino couplings to left-(right-)handed down quarks and squarks

For
$$\epsilon_K$$
, replace: $10^4 \operatorname{Re} \left[(K_L^d)_{12} (K_R^d)_{12} \right] \Rightarrow 10^6 \operatorname{Im} \left[(K_L^d)_{12} (K_R^d)_{12} \right]$

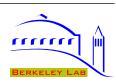
- Classes of models to suppress each factors
 - (i) Heavy squarks: $\tilde{m} \gg 1 \, \mathrm{TeV}$ (e.g., split SUSY)
 - (ii) Universality: $\Delta m_{\tilde{Q},\tilde{D}}^2 \ll \tilde{m}^2$ (e.g., gauge mediation)
 - (iii) Alignment: $|(K_{L,R}^d)_{12}| \ll 1$ (e.g., horizontal symmetries)
- Has driven SUSY model building all models incorporate some of the above
- $D^0 \overline{D}{}^0$ mixing discovery (BaBar & Belle, 2007) ruled out (iii) as sole explanation



Outlook

- Measurements sensitive to scales $> {
 m TeV}$; sensitivity limited by statistics

 The non-observation of NP at $E_{
 m exp} \sim m_B$ is a problem for NP at $\Lambda_{
 m NP} \sim {
 m TeV}$ \Rightarrow New physics could show up any time measurements improve
- If NP is seen: Study it in as many different operators as possible One / many sources of CPV? Only in CC interactions? NP couples mostly to up / down sector? 3rd / all generations? $\Delta(F)=2$ or 1?
- If NP is not seen: Achieve what is theoretically possible
 Could teach us a lot whether or not NP is seen at LHC
- Flavor physics will provide important clues to model building in the LHC era



Looking for surprises

- Will LHC see new particles beyond a Higgs?
 SUSY, something else, understand in detail?
- Will NP be seen in the quark sector?

 B_s : large $A_{\rm SL}^s$, β_s or $B_s \to \mu^+ \mu^-$?

B: Semileptonic $|V_{ub}|$ and $B \to \tau \nu$ agree, in conflict with $\sin 2\beta$?

D: CPV in D^0 – \overline{D}^0 mixing?

• Will NP be seen in the lepton sector?

$$\mu \to e\gamma, \, \mu \to eee, \, \tau \to \mu\gamma, \, \tau \to \mu\mu\mu, \, \dots$$
?

• I don't know, but I'm sure it's worth finding out...! Want to keep looking broadly

