SM uncertainties in some CP asymmetries related to $\sin 2\beta$

Zoltan Ligeti

Is the SM flavor sector confirmed?

[ZL, hep-ph/0408267]

- Photon pol. in $B \to X \gamma$ [Grinstein, Grossman, ZL, Pirjol, PRD 71 (2005) 011504, hep-ph/0412019] ... Time dependent CPV significantly larger in SM than $(m_s/m_b)\sin 2\beta$
- Hadronic $b \to s$ decays [Grossman, ZL, Nir and Quinn, PRD **68** (2003) 015004, hep-ph/0303171] ... SU(3) how far can we get with minimal assumptions? ... 2-body: ϕK_S , $\eta' K_S$, ...
- Conclusions

CKM fits with and without assuming **SM**

Consistency of SM fit often said to imply tight constraints on NP — this is wrong

SM fit: impressive agreement

NP in loops: constraints relaxed

These measurements alone cannot exclude NP in loop processes (coincidence)

Constraining NP in mixing: the '04 news

lacktriangle NP in mixing amplitude only, 3 imes 3 unitarity preserved: $M_{12}=M_{12}^{
m (SM)}\,r_d^2\,e^{2i heta_d}$

$$\Rightarrow \Delta m_B = r_d^2 \Delta m_B^{(\mathrm{SM})}, S_{\psi K} = \sin(2\beta + 2\theta_d), S_{\rho\rho} = \sin(2\alpha - 2\theta_d), \gamma(DK)$$
 unaffected

Constraints with $|V_{ub}|$, Δm_d , $S_{\psi K}$, $A_{\rm SL}$

New in '04: α , γ , $2\beta + \gamma$, $\cos 2\beta$

• Similar to EW fit: $m_H < {\sf few} \times 100 \, {\sf GeV}$ in SM; model independently only $\lesssim 1 {\sf TeV}$

Constraining NP in mixing: the '04 news

NP in mixing amplitude only, 3×3 unitarity preserved: $M_{12} = M_{12}^{(\mathrm{SM})} r_d^2 e^{2i\theta_d}$ $\Rightarrow \Delta m_B = r_d^2 \Delta m_B^{(\mathrm{SM})}, S_{\psi K} = \sin(2\beta + 2\theta_d), S_{\rho\rho} = \sin(2\alpha - 2\theta_d), \gamma(DK) \text{ unaffected}$

• New data restrict θ_d , r_d^2 significantly for the first time — still plenty of room left

Photon polarization in $B o X \gamma$

Source of photon polarization

ullet In the SM, charged current is left handed, so $b
ightarrow s_L$

Photon must be left-handed to conserve J_z along decay axis

Inclusive $B \to X_s \gamma$

Exclusive $B \to K^* \gamma$

Assumption: 2-body decay

Does not apply for $b \rightarrow s\gamma g$

... quark model (s_L implies $J_z^{K^*}=-1$)

... higher K^* Fock states

BSM right handed interaction (motivated by ϕK_S , etc.) can give large $b \to s \gamma_R$

• What is the SM prediction? What limits the sensitivity to new physics?

Measuring the photon polarization

Only measurement so far is time dependent CP asymmetry

$$\frac{\Gamma[\overline{B}^{0}(t) \to f\gamma] - \Gamma[B^{0}(t) \to f\gamma]}{\Gamma[\overline{B}^{0}(t) \to f\gamma] + \Gamma[B^{0}(t) \to f\gamma]} = S_{f\gamma} \sin(\Delta m \, t) - C_{f\gamma} \cos(\Delta m \, t)$$

No $\gamma_L-\gamma_R$ interference \Rightarrow the lore has been: $S_{K^*\gamma}=-2~(m_s/m_b)\sin2\beta$ [Atwood, Gronau, Soni, PRL **79** (1997) 185]

Babar [incl. Moriond'05] & Belle data:

$$S_{K^*\gamma} = -0.38 \pm 0.34 \qquad \text{(my average, no correlation)}$$

$$S_{K_S\pi^0\gamma} = \begin{cases} -0.58^{+0.46}_{-0.38} \pm 0.11 & \text{(Belle, } 0.6\,\text{GeV} < m_{K_S\pi^0} < 1.8\,\text{GeV}) \\ 0.9 \pm 1.0 \pm 0.2 & \text{(Babar, } 1.1\,\text{GeV} < m_{K_S\pi^0} < 1.8\,\text{GeV}) \end{cases}$$

Need $\sim 50 \, \mathrm{ab}^{-1}$ to get $\delta(S_{K^*\gamma}) = 0.04$ experimental error

- Few other proposals, all very hard to measure:
 - photon conversion off detector, study $\gamma \to e^+e^-$ and $K^* \to K\pi$ distributions
 - $B \to K_1 \gamma$, measure up-down asymmetry of γ 's relative to $K_1 \to K \pi \pi$ plane
 - $-\Lambda_b \to \Lambda \gamma$ decay...

Right-handed photons

Considering dominant operator in SM, γ_R suppressed by m_s/m_b to all orders in α_s Can decouple γ_L and γ_R at the level of the Hamiltonian

$$O_7 = \bar{s} \, \sigma^{\mu\nu} F_{\mu\nu} (m_b P_R + m_s P_L) b = \bar{s} \, \sigma^{\mu\nu} (m_b F_{\mu\nu}^L + m_s F_{\mu\nu}^R) b \qquad F_{\mu\nu}^{L,R} = \frac{1}{2} (F_{\mu\nu} \pm i \tilde{F}_{\mu\nu}) b$$

$$F_{\mu\nu}^{L,R} = \frac{1}{2} (F_{\mu\nu} \pm i\widetilde{F}_{\mu\nu})$$

Dominant source of "wrong-helicity" photons in the SM is O_2 :

Equal $b \to s\gamma_L$, $s\gamma_R$ rates at $\mathcal{O}(\alpha_s)$; calculated to $\mathcal{O}(\alpha_s^2\beta_0)$

Inclusively only rates are calculable, get: $\Gamma_{22}^{(brem)}/\Gamma_0 \simeq 0.025$

- Suggests: $A(b \to s \gamma_R)/A(b \to s \gamma_L) \sim \sqrt{\Gamma_{22}^{({\rm brem})}/(2\Gamma_0)} \simeq 0.11$
- Expect similar magnitude for $A(b \to d\gamma_R)/A(b \to d\gamma_L)$ due to imperfect cancellation between (strong phases of) c & u loops

Exclusive $B o K^*\gamma$

Can be analyzed using SCET methods, similar to heavy to light form factors

Technically complicated: in "factorizable" part there is an operator that could contribute at leading order in $\Lambda_{\rm QCD}/m_b$, but its $B \to K^* \gamma$ matrix element vanishes

NB: $\overline{B}^* \to \overline{K}^{(*)} \gamma_R$ occurs at leading order; yields $\overline{B}^0 \to \overline{B}^{0*} \pi_{(soft)} \to K_S \pi^0_{(soft)} \gamma_R$ with modest $m_{K\pi}$, w/o formal $\Lambda_{\rm QCD}/m$ suppression (probably small numerically)

Subleading order: several contributions to $\overline B{}^0 \to \overline K{}^{0*}\gamma_R$, no complete study yet

Our estimate:

$$\frac{A(\overline{B}^0 \to \overline{K}^{0*} \gamma_R)}{A(\overline{B}^0 \to \overline{K}^{0*} \gamma_L)} = \mathcal{O}\left(\frac{C_2}{3C_7} \frac{\Lambda_{\text{QCD}}}{m_b}\right) \sim 0.1$$

• We do not expect $S_{\rho\gamma} \ll S_{K^*\gamma}$ in SM (contrary to AGS prediction: m_d/m_s)

Conclusions from our analysis

- Lots of room for NP, but SM prediction is not as small and pristine as it was thought
 - Inclusive: $\Gamma(b \to s\gamma_R)/\Gamma(b \to s\gamma_L) = \mathcal{O}(\alpha_s)$
 - Exclusive: $A(\overline{B} \to K^* \gamma_R)/A(\overline{B} \to K^* \gamma_L) = \mathcal{O}(\Lambda_{\rm QCD}/m_b)$
 - $S_{f_s\gamma} \sim \mathcal{O}(0.1)$ is possible
 - $S_{f_s\gamma}$ has significant uncertainties in SM (e.g., it depends on strong phases)
 - The suppression of A_R/A_L is not much stronger in $b \to d\gamma$ than it is in $b \to s\gamma$

Comments:

- I would not average $S_{K^*\gamma}$ and semi-inclusive $S_{K_S\pi^0\gamma}$
- Not clear if A_R/A_L should increase for higher mass states; may have cancellations between different states decaying to $K(n\,\pi)$ with same invariant mass

S_{f_s} in hadronic b o s modes

The question

• How large should $S_{f_s} - S_{\psi K}$ be, so that it is definitively due to new physics?

Disclaimers: (i) The following bounds are NOT my best estimates of $|S_{fs} - S_{\psi K}|$ (That is not the question we were interested in)

(ii) Theory errors have no statistical interpretations; we want several times smaller experimental errors to maximize sensitivity to NP

The successes of the SM are impressive:

- Any of Δm_K , $\epsilon_K^{(\prime)}$, $\sin 2\beta$, Δm_B , $B \to X_s \gamma$, $X_s \ell^+ \ell^-$ could have shown NP
- ⇒ Only truly convincing deviations are likely to be interesting

CP asymmetry in $B^0 o f_s$

• Measuring the same angle (β) in different decays may be the best way to find NP

Amplitudes with one weak phase expected to dominate:

$$A = \underbrace{V_{cb}^* V_{cs}}_{\text{cs}} \left[P_c - P_t + T_{c\bar{c}s} \right] + \underbrace{V_{ub}^* V_{us}}_{\text{ub}} \left[P_u - P_t + T_{u\bar{u}s} \right]$$
 dominant contribution suppressed by λ^2

In SM: expect $S_{fs} \approx S_{\psi K}$ and $C_{fs} \approx 0$ at $\mathcal{O}(\lambda^2) \sim 5\%$ level

With NP: $S_{f_s} \neq S_{\psi K}$ and $C_{f_s} \neq 0$ possible

 ψK_S : NP could enter through $B-\overline{B}$ mixing

 ϕK_S : NP could enter through both mixing and decay

• Main concern in SM: how to bound $|\bar{A}/A|-1$, i.e., possible enhancement of $T_{u\bar{u}s}$?

What we are after?

Bound CKM suppressed (second) term's contribution:

$$A_{f} \equiv A(B^{0} \to f) = V_{cb}^{*} V_{cs} \ a_{f}^{c} + V_{ub}^{*} V_{us} \ a_{f}^{u} = V_{cb}^{*} V_{cs} \ a_{f}^{c} (1 + \xi_{f})$$

$$\xi_{f} \equiv \frac{V_{ub}^{*} V_{us}}{V_{cb}^{*} V_{cs}} \frac{a_{f}^{u}}{a_{f}^{c}}, \qquad \delta_{f} = \arg \frac{a_{f}^{u}}{a_{f}^{c}}$$

$$\Rightarrow -\eta_f S_f - \sin 2\beta = 2\cos 2\beta \sin \gamma \cos \delta_f |\xi_f|$$

$$C_f = -2\sin \gamma \sin \delta_f |\xi_f|$$

$$C_f^2 + [(\eta_f S_f + \sin 2\beta)/\cos 2\beta]^2 = 4\sin^2 \gamma |\xi_f|^2$$

Bounds are ellipses in $S_f - C_f$ plane; C's near 0

- lacktriangle Bounds on ξ_f depend on amount of hadronic physics one is willing to use
 - $\mathcal{O}(0.04)$ [CKM suppression]
- Quark model [London & Soni, hep-ph/9704277: ~ 0.02]
- SU(3) relations [this talk]
- QCDF [Beneke & Neubert, hep-ph/0210085: ~ 0.07]

Simplest example

• Compare: $B^0_d \to \pi^0 K^0 \quad (\bar b \to q \bar q \bar s)$ vs. $B^0_s \to \pi^0 \overline K{}^0 \quad (\bar b \to q \bar q \bar d)$

SU(3) flavor symmetry (in this case *U*-spin) implies amplitude relations:

$$A(B_d^0 \to \pi^0 K^0) = V_{cb}^* V_{cs} (P_c - P_t + T_{c\bar{c}s}) + V_{ub}^* V_{us} (P_u - P_t + T_{u\bar{u}s}) \equiv P + T$$

$$A(B_s^0 \to \pi^0 \overline{K}^0) = V_{cb}^* V_{cd} (P_c - P_t + T_{c\bar{c}s}) + V_{ub}^* V_{ud} (P_u - P_t + T_{u\bar{u}s}) = \lambda P + \lambda^{-1} T$$

• 0'th approx.: assume B_d decay dominated by P, while B_s by T

$$|\xi| \equiv \left| \frac{T}{P} \right| = \lambda \sqrt{\frac{\Gamma(B_s^0 \to \pi^0 \overline{K}^0)}{\Gamma(B_d^0 \to \pi^0 K^0)}}$$

1'st approx.: without assumptions

$$\left|\frac{\xi+\lambda^2}{1+\xi}\right| = \lambda \sqrt{\frac{\Gamma(B^0_s\to\pi^0\overline{K}^0)}{\Gamma(B^0_d\to\pi^0K^0)}} \qquad \begin{array}{l} \text{hard for } |\xi|_{\max} \text{ to approach } \lambda^2 \\ \text{(would need info on phases)} \end{array}$$

Next complications: no B_s data, octet-singlet mixing, messy amplitude relations

General case

• For $\bar{b} \rightarrow q\bar{q}\bar{s}$ transitions:

$$A_f = V_{cb}^* V_{cs} \ a_f^c + V_{ub}^* V_{us} \ a_f^u = V_{cb}^* V_{cs} \ a_f^c (1 + \xi_f)$$

For $\bar{b} \rightarrow q\bar{q}\bar{d}$ transitions:

$$A_{f'} = V_{cb}^* V_{cd} \ b_{f'}^c + V_{ub}^* V_{ud} \ b_{f'}^u = V_{ub}^* V_{ud} \ b_{f'}^u (1 + \lambda^2 \xi_{f'}^{-1})$$

• SU(3) gives relations among a_f^q and $b_{f'}^q$: $a_f^u = \sum_{f'} x_{f'} b_{f'}^u$

The branching ratios $\mathcal{B}(f)$ constrain a_f^c and $b_{f'}^u$: $\left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cs}} \frac{b_{f'}^u}{a_f^c} \right| \sim \sqrt{\frac{\mathcal{B}(f')}{\mathcal{B}(f)}}$

• Combining SU(3) and experimental data gives, conservatively:

$$|\xi_f| \equiv \left| \frac{V_{ub}^* V_{us}}{V_{cb}^* V_{cs}} \frac{a_f^u}{a_f^c} \right| < \left| \frac{V_{us}}{V_{ud}} \right| \sum_{f'} |x_{f'}| \sqrt{\frac{\mathcal{B}(f')}{\mathcal{B}(f)}}$$

As explained, the bound is on $\left|\frac{\xi_f + (V_{us}V_{cd})/(V_{ud}V_{cs})}{1+\xi_f}\right|$, small difference if $\lambda^2 \ll \xi_f < 1$

SU(3) relations for $B o P_8 P_8$

• $H \sim (\bar{b} \, q_i)(\bar{q}_j q_k)$ transforms as

$$3 \times 3 \times \overline{3} = 15 + \overline{6} + 3 + 3$$

 $8 \times 8 = 27 + 10 + \overline{10} + 8_S + 8_A + 1$

5 amplitudes describe 15 final states when SU(3) breaking is neglected

For $\eta^{(\prime)}$ (singlet part), 3 more $B \to P_8 P_1$ matrix elements

⇒ Relations among the matrix elements

$f^{(\prime)}$	A_{15}^{27}	A_{15}^8	$A\frac{8}{6}$	A_3^8	A_3^1
$\eta_8 K^0$	$4\sqrt{6}/5$	$1/\sqrt{6}$	$-1/\sqrt{6}$	$-1/\sqrt{6}$	0
$K^0\pi^0$	$12\sqrt{2}/5$	$1/\sqrt{2}$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	0
$K^+\pi^-$	16/5	-1	1	1	0
$\eta_8 K^+$	$8\sqrt{6}/5$	$-\sqrt{3/2}$	$1/\sqrt{6}$	$-1/\sqrt{6}$	0
$K^+\pi^0$	$16\sqrt{2}/5$	$3/\sqrt{2}$	$-1/\sqrt{2}$	$1/\sqrt{2}$	0
$K^0\pi^+$	-8/5	3	-1	1	0
$\begin{bmatrix} \eta_8\pi^0 \\ \pi^0\pi^0 \end{bmatrix}$	0	$5/\sqrt{3}$	$1/\sqrt{3}$	$-1/\sqrt{3}$	0
$\pi^0\pi^0$	$-13\sqrt{2}/5$	$1/\sqrt{2}$	$1/\sqrt{2}$	$1/(3\sqrt{2})$	$\sqrt{2}$
$\eta_8\eta_{8}$	$3\sqrt{2}/5$	$-1/\sqrt{2}$	$-1/\sqrt{2}$	$-1/(3\sqrt{2})$	$\sqrt{2}$
$\pi^-\pi^+$	14/5	1	1	1/3	2
K^-K^+	-2/5	2	0	-2/3	2
$K^0\overline{K^0}$	-2/5	-3	-1	1/3	2
$\eta_8\pi^+$	$4\sqrt{6}/5$	$\sqrt{6}$	$-\sqrt{2/3}$	$\sqrt{2/3}$	0
$\pi^+\pi^0$	$4\sqrt{2}$	0	0	0	0
$K^{+}\overline{K^{0}}$	-8/5	3	-1	1	0

• Decomposition of a^u_f and $b^u_{f'}$ identical with that of a^c_f and $b^c_{f'}$, although the matrix elements are independent \Rightarrow use: $a(f) \equiv a^{u,c}_f$ and $b(f') \equiv b^{u,c}_{f'}$

$\eta' K_S$: the answer

Best bound at present comes from:

$$(s \equiv \sin \theta_{\eta \eta'}, c \equiv \cos \theta_{\eta \eta'})$$

$$a(\eta' K^{0}) = \frac{s^{2} - 2c^{2}}{2\sqrt{2}}b(\eta'\pi^{0}) - \frac{3sc}{2\sqrt{2}}b(\eta\pi^{0}) + \frac{\sqrt{3}s}{4}b(\pi^{0}\pi^{0})$$
$$- \frac{\sqrt{3}s(s^{2} + 4c^{2})}{4}b(\eta'\eta') + \frac{3\sqrt{3}sc^{2}}{4}b(\eta\eta) + \frac{\sqrt{3}c(2c^{2} - s^{2})}{2\sqrt{2}}b(\eta\eta')$$

$$|\xi_{\eta'K_S}| < \left| \frac{V_{us}}{V_{ud}} \right| \left(0.59 \sqrt{\frac{\mathcal{B}(\eta'\pi^0)}{\mathcal{B}(\eta'K^0)}} + 0.33 \sqrt{\frac{\mathcal{B}(\eta\pi^0)}{\mathcal{B}(\eta'K^0)}} + 0.14 \sqrt{\frac{\mathcal{B}(\pi^0\pi^0)}{\mathcal{B}(\eta'K^0)}} \right)$$

$$+ 0.53 \sqrt{\frac{\mathcal{B}(\eta'\eta')}{\mathcal{B}(\eta'K^0)}} + 0.38 \sqrt{\frac{\mathcal{B}(\eta\eta)}{\mathcal{B}(\eta'K^0)}} + 0.96 \sqrt{\frac{\mathcal{B}(\eta\eta')}{\mathcal{B}(\eta'K^0)}} \right)$$

• Yields: $|\xi_{\eta'K_S}| < 0.17$

Using the $\eta' K^+$ mode

• Similar relations hold for charged B decays (x = free param.)

$$a(\eta' K^{+}) = \frac{(3-x)cs}{2}b(\eta \pi^{+}) + \frac{(x-1)s^{2} + 2c^{2}}{2}b(\eta' \pi^{+}) + \frac{(x-3)s}{2\sqrt{3}}b(\pi^{+}\pi^{0}) + \frac{xs}{\sqrt{6}}b(\overline{K^{0}}K^{+})$$

Experimental data $\Rightarrow |\xi_{\eta'K^+}| < 0.08$

• We have $a^c_{\eta'K^0} = a^c_{\eta'K^+}$, but $a^u_{\eta'K^0} \neq a^u_{\eta'K^+}$ $a^u_{\eta'K^+}$ has a color-allowed tree contribution $a^u_{\eta'K^0}$ only arises from a color-suppressed tree diagram or penguins

• Assumption: $|a_{\eta'K^+}^u| \not< |a_{\eta'K^0}^u|$ (I.h.s. larger in large- N_c ; comparable in SCET) $\Rightarrow |\xi_{\eta'K_S}| < 0.08$

Bounds for $B o \phi K_S$

ullet For PV final state, more matrix elements... more complicated relations:

$$\begin{split} a(\phi K^0) &= \frac{1}{2} \left[b(\overline{K^{*0}} K^0) - b(K^{*0} \overline{K^0}) \right] + \frac{1}{2} \sqrt{\frac{3}{2}} \left[cb(\phi \eta) - sb(\phi \eta') \right] \\ &+ \frac{\sqrt{3}}{4} \left[cb(\omega \eta) - sb(\omega \eta') \right] - \frac{\sqrt{3}}{4} \left[cb(\rho^0 \eta) - sb(\rho^0 \eta') \right] \\ &+ \frac{1}{4} b(\rho^0 \pi^0) - \frac{1}{4} b(\omega \pi^0) - \frac{1}{2\sqrt{2}} b(\phi \pi^0) \end{split}$$

 \Rightarrow No bound on $\xi_{\phi K_S}$ using only SU(3) at present (because of $\overline{K^{*0}}K^0$ and $K^{*0}\overline{K^0}$)

• Charged modes: $a(\phi K^+) = b(\phi \pi^+) + b(\overline{K^{*0}}K^+)$ (Grossman, Isidori, Worah)

Contrary to $\eta' K_S$, $a^u_{\phi K^0}$ and $a^u_{\phi K^+}$ are of same order in N_c ($u\bar{u} \to \phi$ is suppressed)

Dynamical assumption: $|a_{\phi K^+}^u| \not < |a_{\phi K^0}^u| \ \Rightarrow \ |\xi_{\phi K_S}| < 0.23$

A plea...

Progress since CKM '03:

 $\xi_{\eta' K_S}$ bound: 0.36 in '03 $\to 0.17$ now $[\eta' K^+$ bound: $0.09 \to 0.08]$

[Due to new data: hep-ex/0403046, hep-ex/0412043]

 $\xi_{\phi K^+}$ bound: 0.25 in '03 $\to 0.23$ now [still no ϕK_S bound based only on SU(3)]

• HFAG \to Rare Decays \to Charmless Mesonic $\to B^+$ table: $\overline{K}^{*0}K^+$ is one of 7 modes where CLEO rules [no Babar / Belle data; all are $K\pi h(h)$ type final states]

 ϕK_S : No bound yet on $\overline{K}^{*0}K^0$ and $K^{*0}\overline{K}^0$

A plea...

Progress since CKM '03:

 $\xi_{\eta'K_S}$ bound: 0.36 in '03 \to 0.17 now $[\eta'K^+$ bound: 0.09 \to 0.08]

[Due to new data: hep-ex/0403046, hep-ex/0412043]

 $\xi_{\phi K^+}$ bound: 0.25 in '03 $\to 0.23$ now [still no ϕK_S bound based only on SU(3)]

• HFAG \to Rare Decays \to Charmless Mesonic $\to B^+$ table: $\overline{K}^{*0}K^+$ is one of 7 modes where CLEO rules [no Babar / Belle data; all are $K\pi h(h)$ type final states]

 ϕK_S : No bound yet on $\overline{K}^{*0}K^0$ and $K^{*0}\overline{K}^0$

Someone, please, look at these!

Other interesting modes

- ullet 3-body modes: No time for $K^+K^-K_S$ and $K_SK_SK_S$ [Engelhard, Nir, Raz, ZL, to appear]
- We missed: $B \to \pi^0 K_S$ simple amplitude relation:

$$a(\pi^0 K_S) = \frac{1}{\sqrt{2}} b(K^+ K^-) - b(\pi^0 \pi^0)$$

Follows from table shown 5 pages earlier... not noticed until asked by Babarians

$$\Rightarrow |\xi_{\pi^0 K_S}| < 0.15$$

[Gronau, Grossman, Rosner, PLB 579 (2004) 331]

Other 2-body modes:

E.g.: could $B \to \rho^0 K_S$ have much larger rate than $B \to \pi^0 K_S$?

Amplitude relations involve: $B \to \rho^0 \pi^0, \; \rho^0 K^0, \; K^{*0} \pi^0, \; K^{*\pm} K^{\mp}$

Summary for $S_{\eta' K_S}$ and $S_{\phi K}$

• $S_{\eta'K_S} = 0.43 \pm 0.11$: largest single deviation from $S_{\psi K}$ at present (2.5 σ)

Conservative SM bound: $|\xi_{\eta'K_S}| < 0.17$ (< 0.08 using $\eta'K^+$ and large N_c)

 $S_{\eta'K_S}$ at its present central value with < half the error would signal NP

Would not only exclude SM, but MFV and universal SUSY models such as GMSB

- $S_{\phi K}=0.34\pm0.20$: significant effect still possible, need to further decrease errors

 No bound yet based only on SU(3); w/ some dynamical assumption, $|\xi_{\phi K_S}|<0.23$ $S_{\phi K_S}$ at its present central value with smaller error would be a sign of NP
- There is a lot to learn from more precise measurements

Conclusions

- Consistency of SM fit does not imply similarly tight constraints on NP
- Right-handed photon polarization in $B \to X \gamma$ is only suppressed by α_s and $\Lambda_{\rm QCD}/m_b$; $S_{K^*\gamma},\, S_{K_S\pi^0\gamma} \sim 0.1$ possible in SM, significantly larger implies NP
- Our bounds on $|\sin 2\beta S_{f_s}|$ are weaker than estimates based on explicit calculations, but have the advantage of being model independent
- ullet SU(3) breaking effects could be significant, but the bounds are probably still very conservative with more data the bounds will improve
- Present $S_{\eta'K_S}$ and $S_{\phi K_S}$ central values with 5σ significance would be convincing signals of NP

