S-Duality and Chern-Simons Theory

Ori Ganor

UC Berkeley and LBNL

January 27, 2009
String Theory Seminar
University of Texas at Austin

Based on

- Yoon Pyo Hong and OG, "S-duality and Chern-Simons Theory," [arXiv:hep-th/0812.1213]
- Yoon Pyo Hong and OG, "S-twisted compactification of $N=4$, Topological 2+1D Quantum Field Theory, and Minimal Strings" [arXiv:hep-th/0902.????]

S-duality

$$
\begin{gathered}
\tau \equiv \frac{4 \pi i}{g_{\mathrm{YM}}^{2}}+\frac{\theta}{2 \pi} \\
\mathbf{s}=\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}) \\
\tau \rightarrow \frac{\mathbf{a} \tau+\mathbf{b}}{\mathbf{c} \tau+\mathbf{d}}
\end{gathered}
$$

S-duality's action on states

$$
\begin{gathered}
\text { Temporal gauge: } A_{0}=0 \\
\widetilde{\Psi}(A) \equiv \int[\mathcal{D} \widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A}) \\
\tau \rightarrow \frac{\mathbf{a} \tau+\mathbf{b}}{\mathbf{c} \tau+\mathbf{d}}, \quad E_{i} \rightarrow \mathbf{a} E_{i}+\mathbf{b} B_{i}, \quad B_{i} \rightarrow \mathbf{c} E_{i}+\mathbf{d} B_{i}
\end{gathered}
$$

[Lozano; Gaiotto \& Witten]

$$
\begin{gathered}
\mathcal{S}(A, \widetilde{A})=\exp \left\{\frac{i}{4 \pi \mathbf{c}} \int(\mathrm{~d} A \wedge d A-2 \widetilde{A} \wedge d A+\mathbf{a} \widetilde{A} \wedge d \widetilde{A})\right\} \\
\widetilde{E}_{i} \mathcal{S}=\mathcal{S}\left(\mathrm{a} E_{i}+\mathrm{b} B_{i}\right), \quad \widetilde{B}_{i} \mathcal{S}=\mathcal{S}\left(\mathbf{c} E_{i}+\mathrm{d} B_{i}\right) \\
E_{i} \equiv-2 \pi i \delta / \delta A_{i}
\end{gathered}
$$

$U(1)$ Chern-Simons from S-duality

$$
\begin{gathered}
\widetilde{\Psi}\{A\} \equiv \int[\mathcal{D} \widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A}) \\
\mathcal{S}(A, \widetilde{A})=\exp \left\{\frac{i}{4 \pi \mathbf{c}} \int(\mathrm{~d} A \wedge d A-2 \widetilde{A} \wedge d A+\mathbf{a} \widetilde{A} \wedge d \widetilde{A})\right\} . \\
A=\widetilde{A} \Longrightarrow \mathcal{I}(A) \equiv \frac{\mathbf{a}+\mathrm{d}-2}{4 \pi \mathbf{c}} \int A \wedge d A \\
\text { CS level: } \quad k \equiv(\mathbf{a}+\mathbf{d}-2) / \mathbf{c} .
\end{gathered}
$$

Physical interpretation?

Selfduality

$$
\tau=\frac{\mathbf{a} \tau+\mathbf{b}}{\mathbf{c} \tau+\mathbf{d}} \Longrightarrow \mathbf{c} \tau+\mathbf{d}=e^{i v}
$$

At a selfdual τ we can compactify on a circle with an S-twist.

$$
\begin{aligned}
& \mathbf{s} \equiv\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \tau \rightarrow-\frac{1}{\tau} \\
& \mathbf{s} \equiv\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \\
& \left.\tau \rightarrow \frac{\mathbf{a}+\mathbf{d}-2}{\mathbf{c}} \right\rvert\,=2 \\
& \mathbf{s}=\left(\begin{array}{cc}
-1 & 1 \\
-1 & 0
\end{array}\right) \\
& \left.\tau \rightarrow \frac{\mathbf{a}+\mathbf{d}-2}{\mathbf{c}} \right\rvert\,=1
\end{aligned}
$$

$N=4$ Super Yang-Mills

$A_{\mu} \quad$ gauge field

$$
\mu=0 \ldots 3
$$

$\Phi^{I} \quad$ adjoint-valued scalars
$I=1 \ldots 6$
$\psi_{\alpha}^{a} \quad$ adjoint-valued spinors
$a=1 \ldots 4$ and $\alpha=1,2$
$\bar{\psi}_{a \dot{\alpha}} \quad$ complex conjugate spinors $a=1 \ldots 4$ and $\dot{\alpha}=\dot{1}, \dot{2}$
$Q_{a \alpha}$ SUSY generators
$a=1 \ldots 4$ and $\alpha=1,2$
$\bar{Q}_{\dot{\alpha}}^{a} \quad$ complex conjugate generators $a=1 \ldots 4$ and $\dot{\alpha}=\dot{1}, \dot{2}$

$$
Z^{1}=\Phi^{1}+i \Phi^{4}, \quad Z^{2}=\Phi^{2}+i \Phi^{5}, \quad Z^{3}=\Phi^{3}+i \Phi^{6} .
$$

Supersymmetry

$$
\begin{gathered}
\mathbf{s}: \tau \rightarrow \frac{\mathbf{a} \tau+\mathbf{b}}{\mathbf{c} \tau+\mathbf{d}} \\
\mathbf{s}: Q_{a \alpha} \rightarrow\left(\frac{\mathbf{c} \tau+\mathbf{d}}{|\mathbf{c} \tau+\mathbf{d}|}\right)^{1 / 2} Q_{a \alpha}=e^{\frac{i v}{2}} Q_{a \alpha}
\end{gathered}
$$

[Kapustin \& Witten]

$$
\mathbf{s}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \Longrightarrow v=\frac{\pi}{2}
$$

R-Symmetry

$\operatorname{Spin}(6) \simeq S U(4)$

$$
\gamma \equiv\left(\begin{array}{llll}
e^{i \varphi_{1}} & & & \\
& e^{i \varphi_{2}} & & \\
& & e^{i \varphi_{3}} & \\
& & & e^{i \varphi_{4}}
\end{array}\right) \in S U(4), \quad\left(\sum_{a} \varphi_{a}=0\right)
$$

acts as

$$
\begin{gathered}
\gamma\left(\psi_{\alpha}^{a}\right)=e^{i \varphi_{a}} \psi_{\alpha}^{a}, \quad \gamma\left(\bar{\psi}_{a \alpha}\right)=e^{-i \varphi_{a}} \bar{\psi}_{a \alpha}, \quad a=1 \ldots 4 \\
\gamma\left(Z^{k}\right)=e^{i\left(\varphi_{k}+\varphi_{4}\right)} Z^{k}, \quad k=1 \ldots 3
\end{gathered}
$$

Combined R-S- action

$$
\begin{gathered}
Q_{a \alpha} \rightarrow e^{\frac{i v}{2}-i \varphi_{a}} Q_{a \alpha} . \\
\Longrightarrow N=2 r \text { invariant generators } \\
r=\#\left\{a \text { for which } e^{i \varphi_{a}}=e^{i v / 2}\right\}
\end{gathered}
$$

R- and S- twisted boundary conditions

$$
\begin{aligned}
& \Phi\left(x=0^{-}\right)=\gamma\left[\Phi\left(x=0^{+}\right)\right] \\
& Z^{k}\left(x=0^{-}\right)=e^{i\left(\varphi_{k}+\varphi_{4}\right)} \Phi\left(x=0^{+}\right), \quad k=1,2,3
\end{aligned}
$$

. .

$\left.\Psi(A, \ldots)\right|_{t=0^{+}}=\left.\int[\mathcal{D} \widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A}, \ldots)\right|_{t=0^{-}}$

$$
\begin{aligned}
& \text { SUSY in } 2+1 \mathrm{D} \\
& \Longrightarrow N=2 r, \quad r=\#\left\{a \text { for which } e^{i \varphi_{a}}=e^{i v / 2}\right\}
\end{aligned}
$$

$$
\gamma=\left(\begin{array}{llll}
e^{\frac{i}{2} v} & & & \\
& e^{\frac{i}{2} v} & & \\
& & e^{\frac{i}{2} v} & \\
& & & e^{-\frac{3 i}{2} v}
\end{array}\right) \Longrightarrow N=6
$$

$$
\gamma=\left(\begin{array}{llll}
e^{\frac{i}{2} v} & & & \\
& e^{\frac{i}{2} v} & & \\
& & e^{-i\left(v+\varphi_{4}\right)} & \\
& & & e^{i \varphi_{4}}
\end{array}\right) \Longrightarrow N=4
$$

$\gamma=$ R-symmetry twist

$$
e^{i v} \equiv \mathbf{c} \tau+\mathbf{d}
$$

$$
\mathbf{s} \equiv\left(\begin{array}{cc}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \begin{aligned}
& \tau=i \\
& \mathbf{s}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \\
& \gamma(v)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{s} \equiv\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \tau \rightarrow-\frac{1}{\tau} \\
& \mathbf{s} \equiv\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right)=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right) \\
& \tau \rightarrow \frac{\tau-1}{\tau} \\
& \mathbf{s}=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right) \\
& \tau \rightarrow \frac{\tau-1}{\tau} \\
& \mathrm{~s}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) \\
& \gamma(v) \\
& N=4 \mathrm{SYM} \\
& \begin{array}{l}
N=6 \\
\text { in } 2+1 \mathrm{D}
\end{array} \\
& \text { IR??? }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s} \equiv\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \tau \rightarrow-\frac{1}{\tau} \quad \text { CS at } k=2 \text { ? } \\
& \tau=i \\
& v=\frac{\pi}{2} \\
& \mathrm{~s}(\mathbf{a}, \mathrm{~b}, \mathbf{c}, \mathrm{~d}) \\
& \gamma(v) \\
& N=4 \mathrm{SYM} \\
& \mathbf{s} \equiv\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right)=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right) \\
& \tau \rightarrow \frac{\tau-1}{\tau} \\
& \mathrm{CS} \text { at } k=1 \text { ? } \\
& \mathbf{s}=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right) \\
& \tau=e^{\pi i / 3} \\
& \tau \rightarrow \frac{\tau-1}{\tau} \\
& \mathrm{CS} \text { at } k=3 \text { ? } \\
& \text { IR??? }
\end{aligned}
$$

Moduli

$$
Z \equiv Z^{1} \equiv \phi^{1}+i \phi^{4}
$$

BPS operators:

$$
\mathcal{O}_{p} \equiv g_{\mathrm{YM}}^{-p} \operatorname{tr}\left(Z^{p}\right), \quad p=1,2, \ldots
$$

These operators are $\mathrm{SL}(2, \mathbb{Z})$-duality invariant [Intriligator].
Action of R-symmetry twist:

$$
\left(\mathcal{O}_{p}\right)^{\gamma}=e^{i p v} \mathcal{O}_{p}
$$

\mathcal{O}_{p} is single-valued if and only if $e^{i p v}=1$.

Moduli . . .

- for $\tau=i$ and $\mathbf{s}=\left(\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right),\left\langle\mathcal{O}_{p}\right\rangle \neq 0$ requires $p \in 4 \mathbb{Z}$;
- for $\tau=e^{\pi i / 3}$ and $\mathbf{s}=\left(\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right)\left\langle\mathcal{O}_{p}\right\rangle \neq 0$ requires $p \in 6 \mathbb{Z}$;
- for $\tau=e^{\pi i / 3}$ and $\mathbf{s}=\left(\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right)\left\langle\mathcal{O}_{p}\right\rangle \neq 0$ requires $p \in 3 \mathbb{Z}$.

For $U(n), \mathcal{O}_{n+1}, \mathcal{O}_{n+2}, \ldots$ are not independent of $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$. Thus for $\tau=i$ and $\mathbf{s}=\mathbf{s}^{\prime}$, for example, if $n<4$ none of the operators \mathcal{O}_{p} can get a VEV.

States on T^{2} from String Theory

type	brane	1	2	3	4	5	6	7	8	9	10	
IIB	D3	$=$	$=$	\times							\mid	T on 1:
IIA	D2	\circ	$=$	\times						\mid	to M:	
M	M2	\circ	$=$	\times						\circ	on 2:	
IIA	F1	\circ	\mid	\times						\circ		

Legend:
| direction doesn't exist in the theory;
$=\mathrm{a}$ direction that the brane wraps;
$\times \quad$ a direction that the brane wraps and has the S-R-twist;

- a compact direction that the brane doesn't wrap;

Counting fixed-points

type	brane	1	2	3	4	5	6	7	8	9	10
IIB	D3	$=$	=	\times							
IIA	F1	-	1	\times							\bigcirc

Directions 1,10 form a T^{2} of complex structure τ;
F1-strings are n points in directions 1,10 ;
F1-strings are wound in direction 3;

Counting fixed-points . .

Directions 1,10 form a T^{2} of complex structure τ;
F1-strings are n points in directions 1,10 ;
F1-strings are wound in direction 3;

S-R-twist is entirely geometrical!
It is a rotation by $v=\pi / 2$ of T^{2};
Need to find fixed points of this rotation (up to S_{n});
$\left\{z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right\}=\left\{z_{1}, \ldots, z_{n}\right\}$ up to $\mathbb{Z}+\mathbb{Z} \tau ;$
One Ramond-Ramond ground state for each fixed point.

T^{2} (directions 1,10$)$ fibered over S^{1} (direction 3):

Geometrical twist and wound string

T^{2} (directions 1,10) fibered over S^{1} (direction 3):
Geometrical twist and wound string
Minimal energy configuration: find fixed points of twist!

T^{2} (directions 1,10) fibered over S^{1} (direction 3):

Geometrical twist and wound string
Minimal energy configuration: find fixed points of twist!
Here's another fixed point.

$n=2$ fixed sets: accounting for multiplicity
10

$$
2=1+1
$$

Counting number of ground states
(Singlet RR ground state)

Counting number of ground states
(Singlet RR ground state)

Number of states for $U(n)$ on T^{2}							
τ	v	$\|k\|$	n				
			1	2	3	4	5
$e^{i \pi / 3}$	$\frac{\pi}{3}$	1	1	3	5	12	19
i	$\frac{\pi}{2}$	2	2	6	12		
$e^{i \pi / 3}$	$-\frac{2 \pi}{3}$	3	3	9			

Number of states for $U(n)$ on T^{2}							
τ	v	$\|k\|$	n				
			1	2	3	4	5
$e^{i \pi / 3}$	$\frac{\pi}{3}$	1	1	3	5	12	19
i	$\frac{\pi}{2}$	2	2	6	12		
$e^{i \pi / 3}$	$-\frac{2 \pi}{3}$	3	3	9			

Chern-Simons:
$U(1)$ level $k: N_{s}=k$.
$S U(2)$ level $k: N_{s}=k+1$.
$S U(3)$ level $k: N_{s}=(k+1)(k+2) / 2$.

S-duality becomes T-duality [Bershadsky \& Johansen \& Sadov \& Vafa; Harvey \& Moore \& Strominger]

Witten Index

$\#\left\{\right.$ vacua of 2+1D theory on $\left.\mathcal{C}_{h}\right\}=I=\operatorname{tr}_{0}\left\{(-1)^{F} \mathcal{T}(\mathbf{s}) \gamma\right\}$.

Hitchin's equations

$$
\begin{aligned}
& F_{z \bar{z}}=\left[\phi_{z}, \bar{\phi}_{\bar{z}}\right] \\
& D_{z} \bar{\phi}_{\bar{z}}=D_{\bar{z}} \phi_{z}=0
\end{aligned}
$$

A_{z} gauge field
$\phi_{z} \quad$ adj.-valued 1-form

Riemann surface

Hitchin's equations

$$
\begin{aligned}
& F_{z \bar{z}}=\left[\phi_{z}, \bar{\phi}_{\bar{z}}\right] \\
& D_{z} \bar{\phi}_{\bar{z}}=D_{\bar{z}} \phi_{z}=0
\end{aligned}
$$

$$
b_{z z}=\operatorname{tr}\left(\phi_{z}^{2}\right) \text { holomorphic with } 4 h-4 \text { zeroes. }
$$

$$
\text { Space of quadratic differentials: } \mathbb{C}^{3(h-1)}
$$

A_{z} gauge field
$\phi_{z} \quad$ adj.-valued 1-form

Riemann surface

Hitchin's equations

$$
\begin{aligned}
& F_{z \bar{z}}=\left[\phi_{z}, \bar{\phi}_{\bar{z}}\right] \\
& D_{z} \bar{\phi}_{\bar{z}}=D_{\bar{z}} \phi_{z}=0
\end{aligned}
$$

$b_{z z}=\operatorname{tr}\left(\phi_{z}^{2}\right)$ holomorphic with $4 h-4$ zeroes.
Space of quadratic differentials: $\mathbb{C}^{3(h-1)}$
A_{z} gauge field
$\phi_{z} \quad$ adj.-valued 1-form

Riemann surface

Double cover has genus $4 h-3$
Prym subspace of its Jacobian: $T^{6(h-1)}$

Hitchin Fibration

Hitchin Fibration

The fiber pver $b_{z z}=0 \ldots$
 $$
b_{z z}=\operatorname{tr}\left(\phi_{z}^{2}\right)=0
$$

Case 1: $\phi_{z}=0 \Longrightarrow \mathcal{M}_{\mathrm{fc}}=$ moduli space of flat connections.
Case 2: $\phi_{z}=\left(\begin{array}{cc}0 & \alpha_{z} \\ 0 & 0\end{array}\right), \quad A_{\bar{z}}=\left(\begin{array}{rr}a_{\bar{z}} & c_{\bar{z}} \\ 0 & -a_{\bar{z}}\end{array}\right)$,

$$
\begin{gathered}
a_{\bar{z}}=-\frac{1}{2} \partial_{\bar{z}} \log \alpha_{z} \\
\partial_{z} a_{\bar{z}}-\partial_{\bar{z}} a_{z}=\left|\alpha_{z}\right|^{2}+\left|c_{\bar{z}}\right|^{2}, \quad \text { and } \frac{c_{\bar{z}}^{*}}{\alpha_{z}}=\text { holomorphic. }
\end{gathered}
$$

Special subcase of 2: $c_{\bar{z}}=0$.

The fiber pver $b_{z z}=0 \ldots$
 $$
b_{z z}=\operatorname{tr}\left(\phi_{z}^{2}\right)=0
$$

Case 1: $\phi_{z}=0 \Longrightarrow \mathcal{M}_{\mathrm{fc}}=$ moduli space of flat connections.
Case 2: $\phi_{z}=\left(\begin{array}{cc}0 & \alpha_{z} \\ 0 & 0\end{array}\right), \quad A_{\bar{z}}=\left(\begin{array}{rc}a_{\bar{z}} & c_{\bar{z}} \\ 0 & -a_{\bar{z}}\end{array}\right)$,

$$
\begin{gathered}
a_{\bar{z}}=-\frac{1}{2} \partial_{\bar{z}} \log \alpha_{z} \\
\partial_{z} a_{\bar{z}}-\partial_{\bar{z}} a_{z}=\left|\alpha_{z}\right|^{2}+\left|c_{\bar{z}}\right|^{2}, \quad \text { and } \frac{c_{\bar{z}}^{*}}{\alpha_{z}}=\text { holomorphic. }
\end{gathered}
$$

Special subcase of 2: $c_{\bar{z}}=0$.
if also genus $h=2: \alpha_{z}$ has a single simple zero on \mathcal{C}_{2} which determines the solution uniquely up to gauge.

The fiber over $b_{z z}=0 \ldots$

T-duality and Geometric Quantization

$1+1 \mathrm{D} \sigma$-model with target space X
$T=$ T-duality (mirror symmetry) twist
$\gamma=$ some isometry twist

IR?

Geometric quantization on γ-invariant subspace???

The fiber over $b_{z z}=0 \ldots$.

The fiber over $b_{z z}=0 \ldots$.

Conclusions

- Compactification of $N=4 U(n)$ SYM on S^{1} with an S-duality twist, at a self-dual τ seems to give a topological 2+1D QFT in IR for n sufficiently small;
- Number of (ground) states on T^{2} can be computed by string dualities;
- Number of (ground) states on $\mathcal{C}_{h}(h>1)$ could be computed if we could determine the signs in the action of S-duality on $H^{*}\left(\mathcal{M}_{H}\right)$;

Open questions

- What is this topological $2+1 \mathrm{D}$ theory?
- Wilson lines?
- Mirror symmetry twist and geometric quantization?
- Nonlocal topological structure from the kernel $\mathcal{S}\left(A, A_{D}\right)$? (Simple argument suggests that correlation functions of pairs of Wilson lines is proportional to the linking number.)
- Can we extract any new clues about S-duality from this?

Thank you!

Title

