S-Duality and Chern-Simons Theory

Ori Ganor

UC Berkeley and LBNL

January 27, 2009

String Theory Seminar

University of Texas at Austin

Based on

- Yoon Pyo Hong and OG, "S-duality and Chern-Simons Theory," [arXiv:hep-th/0812.1213]
- Yoon Pyo Hong and OG, "S-twisted compactification of N=4, Topological 2+1D Quantum Field Theory, and Minimal Strings" [arXiv:hep-th/0902.????]

S-duality

$$\tau \equiv \frac{4\pi i}{g_{\rm YM}^2} + \frac{\theta}{2\pi}$$

$$\mathbf{s} = \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$$

$$\tau \to \frac{\mathbf{a}\tau + \mathbf{b}}{\mathbf{c}\tau + \mathbf{d}}.$$

S-duality's action on states

Temporal gauge:
$$A_0 = 0$$
.

$$\widetilde{\Psi}(A) \equiv \int [\mathcal{D}\widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A})$$

$$au
ightarrow rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}\,, \qquad E_i
ightarrow \mathbf{a}E_i + \mathbf{b}B_i\,, \quad B_i
ightarrow \mathbf{c}E_i + \mathbf{d}B_i\,.$$

[Lozano; Gaiotto & Witten]

$$S(A, \widetilde{A}) = \exp\left\{\frac{i}{4\pi\mathbf{c}} \int (\mathbf{d}A \wedge dA - 2\widetilde{A} \wedge dA + \mathbf{a}\widetilde{A} \wedge d\widetilde{A})\right\}.$$

$$\widetilde{E}_i \mathcal{S} = \mathcal{S}(\mathbf{a}E_i + \mathbf{b}B_i), \qquad \widetilde{B}_i \mathcal{S} = \mathcal{S}(\mathbf{c}E_i + \mathbf{d}B_i).$$

$$E_i \equiv -2\pi i \delta/\delta A_i$$

U(1) Chern-Simons from S-duality

$$\widetilde{\Psi}\{A\} \equiv \int [\mathcal{D}\widetilde{A}] \mathcal{S}(A, \widetilde{A}) \Psi(\widetilde{A})$$

$$\mathcal{S}(A, \widetilde{A}) = \exp\left\{\frac{i}{4\pi\mathbf{c}} \int (\mathbf{d}A \wedge dA - 2\widetilde{A} \wedge dA + \mathbf{a}\widetilde{A} \wedge d\widetilde{A})\right\}.$$

$$A = \widetilde{A} \Longrightarrow \mathcal{I}(A) \equiv \frac{\mathbf{a} + \mathbf{d} - 2}{4\pi\mathbf{c}} \int A \wedge dA.$$

$$CS \text{ level:} \qquad k \equiv (\mathbf{a} + \mathbf{d} - 2)/\mathbf{c}.$$

Physical interpretation?

Selfduality

$$au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \Longrightarrow \mathbf{c} au + \mathbf{d} = e^{iv}.$$

At a selfdual τ we can compactify on a circle with an S-twist.

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\tau \to -\frac{1}{\tau}$$
 $|k| = \left|\frac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}}\right| = 2$

$$\tau = i$$

$$v = \frac{\pi}{2}$$

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au o frac{ au - 1}{ au} \qquad |k| = \left| frac{\mathbf{a} + \mathbf{d} - 2}{\mathbf{c}} \right| = 1$$

$$\tau = e^{\pi i/3}$$

$$v = \frac{\pi}{3}$$

$$\mathbf{s} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\tau \to \frac{\tau - 1}{\tau} \qquad |k| = 3$$

$$au o rac{ au - 1}{ au} \qquad |k| = 3$$

periodic time

N = 4 Super Yang-Mills

```
A_{\mu} gauge field \mu = 0...3
\Phi^{I} adjoint-valued scalars I = 1...6
\psi^{a}_{\alpha} adjoint-valued spinors a = 1...4 and \alpha = 1, 2
\overline{\psi}_{a\dot{\alpha}} complex conjugate spinors a = 1...4 and \dot{\alpha} = \dot{1}, \dot{2}
Q_{a\alpha} SUSY generators a = 1...4 and \alpha = 1, 2
\overline{Q}^{a}_{\dot{\alpha}} complex conjugate generators a = 1...4 and \dot{\alpha} = \dot{1}, \dot{2}
Z^{1} = \Phi^{1} + i\Phi^{4}, \qquad Z^{2} = \Phi^{2} + i\Phi^{5}, \qquad Z^{3} = \Phi^{3} + i\Phi^{6}.
```

Supersymmetry

$$\mathbf{s}: au
ightarrow rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}} \ \mathbf{s}:Q_{alpha}
ightarrow \left(rac{\mathbf{c} au + \mathbf{d}}{|\mathbf{c} au + \mathbf{d}|}
ight)^{1/2}Q_{alpha} = e^{rac{iv}{2}}Q_{alpha}$$

[Kapustin & Witten]

$$\mathbf{s} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Longrightarrow \upsilon = \frac{\pi}{2}$$

R-Symmetry

$$Spin(6) \simeq SU(4)$$

$$\gamma \equiv \begin{pmatrix} e^{i\varphi_1} & & & \\ & e^{i\varphi_2} & & \\ & & e^{i\varphi_3} & \\ & & & e^{i\varphi_4} \end{pmatrix} \in SU(4) \,, \qquad \left(\sum_a \varphi_a = 0\right) \,,$$

acts as

$$\gamma(\psi_{\alpha}^{a}) = e^{i\varphi_{a}}\psi_{\alpha}^{a}, \qquad \gamma(\overline{\psi}_{a\alpha}) = e^{-i\varphi_{a}}\overline{\psi}_{a\alpha}, \qquad a = 1...4.$$
$$\gamma(Z^{k}) = e^{i(\varphi_{k} + \varphi_{4})}Z^{k}, \qquad k = 1...3.$$

Combined R-S- action

$$Q_{a\alpha} \to e^{\frac{iv}{2} - i\varphi_a} Q_{a\alpha}$$
.
 $\Longrightarrow N = 2r$ invariant generators
 $r = \#\{a \text{ for which } e^{i\varphi_a} = e^{iv/2}\}$

R- and S- twisted boundary conditions

$$\xrightarrow{\gamma}$$
 \xrightarrow{x}

$$\Phi(x=0^-) = \gamma [\Phi(x=0^+)]$$

$$Z^{k}(x=0^{-}) = e^{i(\varphi_{k}+\varphi_{4})}\Phi(x=0^{+}), \qquad k=1,2,3$$

. . .

$$\begin{array}{c}
t \\
\Psi(A,\dots)|_{t=0^{+}} = \int [\mathcal{D}\widetilde{A}]\mathcal{S}(A,\widetilde{A})\Psi(\widetilde{A},\dots)|_{t=0^{-}}
\end{array}$$

SUSY in 2+1D

$$\implies N = 2r, \qquad r = \#\{a \text{ for which } e^{i\varphi_a} = e^{i\upsilon/2}\}$$

$$\Longrightarrow N = 2r, \qquad r = \#\{a \text{ for which } e^{i\varphi_a} = e^{i\upsilon/2}\}$$

$$\gamma = \begin{pmatrix} e^{\frac{i}{2}\upsilon} & & \\ & e^{\frac{i}{2}\upsilon} & \\ & & e^{-\frac{3i}{2}\upsilon} \end{pmatrix} \Longrightarrow N = 6$$

$$\gamma = \begin{pmatrix} e^{\frac{i}{2}v} \\ e^{\frac{i}{2}v} \\ e^{-i(v+\varphi_4)} \end{pmatrix} \Longrightarrow N = 4$$

 $\gamma = \text{R-symmetry twist}$ $e^{iv} \equiv \mathbf{c}\tau + \mathbf{d}$

$$e^{iv} \equiv \mathbf{c}\tau + \mathbf{d}$$

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au
ightarrow - rac{1}{ au}$$

 $\mathbf{s}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$ $\gamma(\mathbf{v})$

$$N = 4 \text{ SYM}$$

$$N = 6$$
in 2+1D

IR???

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au \rightarrow -\frac{1}{\tau}$$

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au
ightarrow rac{ au - 1}{ au}$$

$$\mathbf{s} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\tau \to \frac{\tau - 1}{\tau}$$

$$au
ightarrow rac{ au-1}{ au}$$

$$\tau = i$$

$$v = \frac{\pi}{2}$$

$$v = \frac{\pi}{2}$$

 $\tau = e^{\pi i/3}$

 $v = \frac{\pi}{3}$

 $\tau = e^{\pi i/3}$

$$egin{aligned} \mathbf{s}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}) \\ \gamma(oldsymbol{v}) \end{aligned}$$

$$N = 4 \text{ SYM}$$

$$v = -\frac{2\pi}{3}$$

$$N = 6$$
in 2+1D
$$IR???$$

$$N = 6$$
 in 2+1D

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\tau = i$$

$$v = \frac{\pi}{2}$$

 $egin{aligned} \mathbf{s}(\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}) \ \gamma(oldsymbol{v}) \end{aligned}$

$$au
ightarrow - rac{1}{ au}$$

 $\tau \to -\frac{1}{\tau}$ CS at k=2?

N = 4 SYM

$$\mathbf{s} \equiv \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$au o rac{ au - 1}{ au}$$

 $\tau \to \frac{\tau - 1}{\tau}$ CS at k = 1?

 $\tau = e^{\pi i/3}$

$$au o frac{ au - 1}{ au}$$
 CS at $k = 3$?

Moduli

$$Z \equiv Z^1 \equiv \phi^1 + i\phi^4$$

BPS operators:

$$\mathcal{O}_p \equiv g_{\mathrm{YM}}^{-p} \operatorname{tr}(Z^p), \qquad p = 1, 2, \dots$$

These operators are $SL(2,\mathbb{Z})$ -duality invariant [Intriligator].

Action of R-symmetry twist:

$$(\mathcal{O}_p)^{\gamma} = e^{ipv} \mathcal{O}_p .$$

 \mathcal{O}_p is single-valued if and only if $e^{ipv} = 1$.

Moduli ...

- for $\tau = i$ and $\mathbf{s} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, $\langle \mathcal{O}_p \rangle \neq 0$ requires $p \in 4\mathbb{Z}$;
- for $\tau = e^{\pi i/3}$ and $\mathbf{s} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \langle \mathcal{O}_p \rangle \neq 0$ requires $p \in 6\mathbb{Z}$;
- for $\tau = e^{\pi i/3}$ and $\mathbf{s} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \langle \mathcal{O}_p \rangle \neq 0$ requires $p \in 3\mathbb{Z}$.

For U(n), \mathcal{O}_{n+1} , \mathcal{O}_{n+2} , ... are not independent of \mathcal{O}_1 , ..., \mathcal{O}_n . Thus for $\tau = i$ and $\mathbf{s} = \mathbf{s}'$, for example, if n < 4 none of the operators \mathcal{O}_p can get a VEV.

States on T^2 from String Theory

type	brane	1	2	3	4	5	6	7	8	9	10	
IIB	D3	=	=	×								T on 1:
IIA	D2	0	=	×								to M:
${ m M}$	M2	0	=	×							0	on 2:
IIA	F1	0		×							0	

Legend:

- direction doesn't exist in the theory;
- = a direction that the brane wraps;
- × a direction that the brane wraps and has the S-R-twist;
- a compact direction that the brane doesn't wrap;

Counting fixed-points

type	brane	1	2	3	4	5	6	7	8	9	10
IIB	D3		=	×							
IIA	F1	0		×							0

$$\tau = i \Longrightarrow g_{\text{IIB}} = 1 \Longrightarrow R_1 = R_{10}.$$

Directions 1, 10 form a T^2 of complex structure τ ;

F1-strings are n points in directions 1, 10;

F1-strings are wound in direction 3;

Counting fixed-points ...

```
Directions 1, 10 form a T^2 of complex structure \tau;

F1-strings are n points in directions 1, 10;

F1-strings are wound in direction 3;

S-R-twist is entirely geometrical!

It is a rotation by v = \pi/2 of T^2;

Need to find fixed points of this rotation (up to S_n);

\{z_{\sigma(1)}, \dots, z_{\sigma(n)}\} = \{z_1, \dots, z_n\} up to \mathbb{Z} + \mathbb{Z}\tau;

One Ramond-Ramond ground state for each fixed point.
```


 T^2 (directions 1, 10) fibered over S^1 (direction 3): Geometrical twist and wound string Minimal energy configuration: find fixed points of twist! 104

 T^2 (directions 1, 10) fibered over S^1 (direction 3): Geometrical twist and wound string Minimal energy configuration: find fixed points of twist! Here's another fixed point. 10

Counting number of ground states

(Singlet RR ground state)

Counting number of ground states

(Singlet RR ground state)

(Singlet RR ground state)
$$n = 1$$

$$n = 2$$

$$v = \frac{\pi}{3}$$

$$n = 3$$

$$n = 3$$

$$n = 4$$

$$n = 5$$

$$n = 6$$

$$n = 1$$

$$n = 1$$

$$n = 1$$

$$n = 3$$

$$n = 3$$

$$n = 4$$

$$n = 5$$

$$n = 4$$

$$n = 5$$

Number of states for $U(n)$ on T^2										
			n							
au	v	k	1	2	3	4	5			
$e^{i\pi/3}$	$\frac{\pi}{3}$	1	1	3	5	12	19			
i	$\frac{\pi}{2}$	2	2	6	12					
$e^{i\pi/3}$	$-\frac{2\pi}{3}$	3	3	9						

Number of states for U(n) on T^2

			n					
au	v	k	1	2	3	4	5	
$e^{i\pi/3}$	$\frac{\pi}{3}$	1	1	3	5	12	19	
i	$\frac{\pi}{2}$	2	2	6	12			
$e^{i\pi/3}$	$-\frac{2\pi}{3}$	3	3	9				

Chern-Simons:

U(1) level k: $N_s = k$.

SU(2) level k: $N_s = k + 1$.

SU(3) level $k: N_s = (k+1)(k+2)/2$.

$$\mathcal{A} \to 0 \Longrightarrow \sigma$$
-model on \mathcal{M}_H

S-duality becomes T-duality [Bershadsky & Johansen & Sadov & Vafa; Harvey & Moore & Strominger]

Witten Index

 $\#\{\text{vacua of }2+1\text{D theory on }\mathcal{C}_h\}=I=\operatorname{tr}_0\{(-1)^F\mathcal{T}(\mathbf{s})\gamma\}.$

Hitchin's equations

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

 A_z gauge field

adj.-valued 1-form

Riemann surface

Hitchin's equations

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

 $b_{zz} = \operatorname{tr}(\phi_z^2)$ holomorphic with 4h - 4 zeroes. Space of quadratic differentials: $\mathbb{C}^{3(h-1)}$

gauge field

adj.-valued 1-form

Riemann surface

Hitchin's equations

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$F_{z\overline{z}} = [\phi_z, \overline{\phi}_{\overline{z}}]$$

$$D_z \overline{\phi}_{\overline{z}} = D_{\overline{z}} \phi_z = 0$$

 $b_{zz} = \operatorname{tr}(\phi_z^2)$ holomorphic with 4h - 4 zeroes. Space of quadratic differentials: $\mathbb{C}^{3(h-1)}$

gauge field

adj.-valued 1-form

Riemann surface

Double cover has genus 4h - 3

Prym subspace of its Jacobian: $T^{6(h-1)}$

The fiber pver $b_{zz} = 0 \dots$

$$b_{zz} = \operatorname{tr}(\phi_z^2) = 0$$

Case 1: $\phi_z = 0 \Longrightarrow \mathcal{M}_{fc} = \text{moduli space of flat connections.}$

$$\underline{\text{Case 2}} \colon \phi_z = \left(\begin{array}{cc} 0 & \alpha_z \\ 0 & 0 \end{array} \right) \,, \qquad A_{\overline{z}} = \left(\begin{array}{cc} a_{\overline{z}} & c_{\overline{z}} \\ 0 & -a_{\overline{z}} \end{array} \right) \,,$$

$$a_{\overline{z}} = -\frac{1}{2} \partial_{\overline{z}} \log \alpha_z \,,$$

$$\partial_z a_{\overline{z}} - \partial_{\overline{z}} a_z = |\alpha_z|^2 + |c_{\overline{z}}|^2$$
, and $\frac{c_{\overline{z}}^*}{\alpha_z} = \text{holomorphic.}$

Special subcase of 2: $c_{\overline{z}} = 0$.

The fiber pver $b_{zz} = 0 \dots$

$$b_{zz} = \operatorname{tr}(\phi_z^2) = 0$$

Case 1: $\phi_z = 0 \Longrightarrow \mathcal{M}_{fc} = \text{moduli space of flat connections.}$

$$\underline{\text{Case 2: }} \phi_z = \begin{pmatrix} 0 & \alpha_z \\ 0 & 0 \end{pmatrix}, \qquad A_{\overline{z}} = \begin{pmatrix} a_{\overline{z}} & c_{\overline{z}} \\ 0 & -a_{\overline{z}} \end{pmatrix},$$

$$a_{\overline{z}} = -\frac{1}{2} \partial_{\overline{z}} \log \alpha_z \,,$$

$$\partial_z a_{\overline{z}} - \partial_{\overline{z}} a_z = |\alpha_z|^2 + |c_{\overline{z}}|^2$$
, and $\frac{c_{\overline{z}}^*}{\alpha_z} = \text{holomorphic.}$

Special subcase of 2: $c_{\overline{z}} = 0$.

if also genus h = 2: α_z has a single simple zero on \mathcal{C}_2 which determines the solution uniquely up to gauge.

T-duality and Geometric Quantization

1+1D σ -model with target space X

T = T-duality (mirror symmetry) twist $\gamma = \text{some isometry twist}$

IR?

Geometric quantization on γ -invariant subspace???

Conclusions

- Compactification of N=4 U(n) SYM on S^1 with an S-duality twist, at a self-dual τ seems to give a topological 2+1D QFT in IR for n sufficiently small;
- Number of (ground) states on T^2 can be computed by string dualities;
- Number of (ground) states on C_h (h > 1) could be computed if we could determine the signs in the action of S-duality on $H^*(\mathcal{M}_H)$;

Open questions

- What is this topological 2+1D theory?
- Wilson lines?
- Mirror symmetry twist and geometric quantization?
- Nonlocal topological structure from the kernel $S(A, A_D)$?

 (Simple argument suggests that correlation functions of pairs of Wilson lines is proportional to the linking number.)
- Can we extract any new clues about S-duality from this?

