
PHY 250 (P. Horava) Homework Assignment 4 Solutions
Grader: Uday Varadarajan

1. Problem 2.1 of Polchinski, Vol. 1:

We first show that ∂∂̄ log |z|2 = 2πδ2(z, z̄) using the analytic version of Stokes theorem. Since we
know that ∂∂̄ log |z|2 = 0 for z 6= 0,∫

d2z f(z, z̄)∂∂̄ log |z|2 = f(0, 0)
∫

d2z ∂∂̄ log |z|2 = if(0, 0)
∫

dz ∧ dz̄ ∂∂̄ log |z|2

= if(0, 0)
∮

dz̄ ∂̄ log |z|2 = −2πf(0, 0)
∮

dz̄

2πi

1
z̄

= 2πf(0, 0).
(4.1)

Thus, we find that ∂∂̄ log |z|2 = 2πδ2(z, z̄) as promised.

Now, instead of using Stokes theorem, we can instead show the same relation by using a regulator
starting with the expression,∫

d2z f(z, z̄)∂∂̄ log |z|2 = f(0, 0) lim
ε→0

∫
d2z ∂∂̄ log(|z|2 + ε) = f(0, 0) lim

ε→0

∫
d2z ∂

(
z

|z|2 + ε

)
= f(0, 0) lim

ε→0

∫
d2z

ε

(|z|2 + ε)2
= f(0, 0) lim

ε→0

∫ R

0

2rdr

∫ 2π

0

dθ
ε

(r2 + ε)2

= f(0, 0) lim
ε→0

(
2π − 2πε

(R2 + ε)

)
= 2πf(0, 0).

(4.2)

where we used d2z = 2rdrdθ, and we get the right result, ∂∂̄ log |z|2 = 2πδ2(z, z̄).

2. Problem 2.3(a) of Polchinski, Vol. 1:

We consider, without loss of generality, the first two vertex operators. From the OPE,〈
: eik1·X(z1,z̄1) :: eik2·X(z2,z̄2) : · · ·

〉
= |z12|α

′k1·k2

〈
: ei(k1+k2)·X(z2,z̄2)(1 + O(z12, z̄12)) : · · ·

〉
(4.3)

we would expect that the leading behavior of the amplitude as vertices 1 and 2 approach eachother,
but all other vertices remain far apart, would be |z12|α

′k1·k2 times the amplitude with n− 1 vertex
operators with the first one having momentum k1 + k2. We’d like to verify this behavior using the
explicit form of the amplitude,〈

n∏
i=1

: eiki·X(zi,z̄i) :

〉
= iCX(2π)DδD(

n∑
i=1

ki)
n∏

i<j

|zij |α
′ki·kj ,

= iCX(2π)DδD(
n∑

i=1

ki)

|z12|α
′k1·k2

n∏
j=3

|z1j |α
′k1·kj |z2j |α

′k2·kj

 n∏
i<j=3

|zij |α
′ki·kj ,

(4.4)

where we’ve factored out the dependence on z1 and z2. Now, in the limit that we are taking, we
note that

|z1j | = |z12 + z2j | = |z2j |(1 + O(z12, z̄12)). (4.5)

Thus, we find that

|z12|α
′k1·k2

n∏
j=3

|z1j |α
′k1·kj |z2j |α

′k2·kj = |z12|α
′k1·k2

n∏
j=3

|z2j |α
′(k1+k2)·kj (1 + O(z12, z̄12)). (4.6)
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Plugging this back into the expression for the amplitude,〈
n∏

i=1

: eiki·X(zi,z̄i) :

〉
= |z12|α

′k1·k2iCX(2π)DδD(
n∑

i=1

ki)
n∏

l=3

|z2l|α
′(k1+k2)·kl(1 + O(z12, z̄12))

n∏
i<j=3

|zij |α
′ki·kj

= |z12|α
′k1·k2

〈
: ei(k1+k2)·X(z2,z̄2)(1 + O(z12, z̄12)) :

n∏
i=3

: eiki·X(zi,z̄i) :

〉
(4.7)

which is just the behavior we expected.

3. Problem 2.10 of Polchinski, Vol. 1:

For this problem, we first note that the arguments we used to derive the XX OPE must be modified
to account for the presence of the boundary. In particular, without a boundary, the Schwinger-
Dyson equations,

0 =
∫
DX

δ

δXµ(z, z̄)
(
Xν(z′, z̄′)e−S

)
, (4.8)

tell us that the XX expectation value is a Green’s function, a solution to Poisson’s equation,

∂∂̄ 〈Xµ(z, z̄)Xν(z′, z̄′)〉 = −πα′ηµνδ2(z − z′). (4.9)

We can think of this as an electrostatics problem in 2D, where we are trying to find the electric
potential at z due to a point charge at some position z′. We showed in Problem 1 (2.1 of Polchinski)
that for the complex plane without a boundary, the solution is just −α′

2 ηµν log |z − z′|2. Now,
suppose we introduce a boundary, which we take to be the real axis (so Im z = 0). Far away
from the boundary, we expect that the Schwinger-Dyson equations should be unchanged. Thus,
we see that even in the presence of a boundary, the two point function must be a Green’s function
for z and z′ not on the boundary. However, we must make sure that our solution respects the
boundary conditions we impose. This additional requirement may be understood as arising from
a modification to the Schwinger-Dyson equations due to restricting the range of integration to
fields satisfying the boundary condition that we impose (for instance, by explicitly adding a delta
functional fixing the b.c.’s). However, instead of pursuing this explictly via the path integral, we
will use an analogy to electrostatics to solve this problem.

We consider Neumann b.c.’s, which means that we require that the normal derivative of X vanishes.
Translating back to electrostatics, this is essentially requiring that the electric field normal to the
boundary vanish. This is clearly not satisfied by the solution on the flat plane, as the electric field
lines emanating radially from a single charge pierce through the boundary at Im z = 0. However,
it is easy to see that placing an image charge at the point z̄′ implements our boundary condition
perfectly. The boundary would then be midway between the two like charges, and therefore only
have a tangential electric field. The electric potential due to the sum of these charges is given by,

〈Xµ(z, z̄)Xν(z′, z̄′)〉D2
= −α′

2
ηµν log |z − z′|2 − α′

2
ηµν log |z − z̄′|2 (4.10)

which obeys Poisson’s equation everywhere in the upper half plane with Neumann boundary con-
ditions. Note that since the image charge is always in the lower half plane, it never gives rise to
any extra singularities for operators defined in the interior of the upper half plane. In particular,
if z and z′ are both in the interior of the upper half plane, the potential due to the image charge
is harmonic (acting with the Laplacian simply gives us a delta-function which is never satisfied
except for both z and z′ on the boundary). Thus, we can see explicitly that the Schwinger-Dyson
equations are unchanged in the interior. However, as an operator approaches the boundary, new
divergences can appear due to collisions with the image charge.

In particular, as z approaches the boundary, the two charges coincide and give rise to double the
original potential. Ordinary normal ordering just subtracts off the effect of the original charge,

: Xµ(z, z̄)Xν(z′, z̄′) := Xµ(z, z̄)Xν(z′, z̄′) +
α′

2
ηµν log |z − z′|2, (4.11)
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and so we find that for z = y real,

〈: Xµ(y)Xν(z′, z̄′) :〉D2
= −α′

2
ηµν log |y − z̄′|2 (4.12)

is still singular as z′ → y! Thus, we need to modify our normal ordering scheme for operators
defined on the boundary, to subtract off the contribution due to the image charge as well. This is
done by defining boundary normal ordering by:

?
? Xµ(y1)Xν(y2)

?
?= Xµ(y1)Xν(y2) + α′ηµν log(y1 − y2)2. (4.13)

For arbitrary operators, we get

?
? F ?

?= exp
(∫

dy1dy2
α′

2
ηµν log(y1 − y2)2

δ

δXµ(y1)
δ

δXν(y2)

)
F . (4.14)

Further, this yields the useful expression,

?
? F ?

?
?
? G ?

?= exp
(
−

∫
dy1dy2α

′ηµν log(y1 − y2)2
δ

δXµ
F (y1)

δ

δXν
G(y2)

)
?
? FG ?

? . (4.15)

This easily yields the result that

?
? eik1·X(y1) ?

?
?
? eik2·X(y2) ?

? = exp
(
−α′ log(y1 − y2)2(ik1) · (ik2)

) ?
? eik1·X(y1)eik2·X(y2) ?

?

= |y1 − y2|2α′k1·k2 ?
? eik1·X(y1)eik2·X(y2) ?

?

(4.16)

Now, we can translate between boundary normal ordering and the usual conformal normal ordering
by using Eqn. 2.7.14 of Poclchinski. First, we can extend the boundary normal ordering to an
operator in the bulk just by subtracting off the extra term corresponding to the contribution of
the image charge from our conformally normal ordered operator. Since this term is regular in the
interior of the disk, this is a well defined normal ordering scheme. Then, the difference in the
normal ordered products is just

?
? Xµ(z1, z̄1)Xν(z2, z̄2)

?
?=: Xµ(z1, z̄1)Xν(z2, z̄2) : +

α′

2
ηµν log |z1 − z̄2|2. (4.17)

For a general operator, this difference (Eqn. 2.7.14) yields the relation,

: F := exp
(
−

∫
d2z1d

2z2
α′

4
ηµν log |z1 − z̄2|2

δ

δXµ(z1, z̄1)
δ

δXν(z2, z̄2)

)
?
? F ?

? . (4.18)

Since the boundary normal ordering eliminates the singularities appearing at the boundary, the only
possible singular behavior of a conformal normal ordered operator will arise from the exponential
of contractions in the above expression. In particular, considering the limit as Im z → 0 of the
following expression,

: eik·X(z,z̄) := e

(
−α′

4 log |z−z̄|2(ik)·(ik)
)

?
? eik·X(z,z̄) ?

?= |2Im z|α
′k2/2 ?

? eik·X(z,z̄) ?
? (4.19)

we easily see that the conformal normal ordered vertex operator is non-singular on the boundary
only if k2 > 0, and generally diverges as |2Imz|α′k2/2.

4. Problem 2.12 of Polchinski, Vol. 1:

The conserved charges αµ
m (we consider only the holomorphic case - the antiholomorphic case is

essentially identical) are just the Laurent coefficients of the holomorphic field ∂X(z), (Eqn. 2.7.2a
of Polchinski)

αµ
m =

(
2
α′

)1/2 ∮
dz

2π
zm∂Xµ(z). (4.20)
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Thus, as Q =
∮

dz
2πij, they are associated with the holomorphic currents,

jµ
m(z) = i

(
2
α′

)1/2

zm∂Xµ(z). (4.21)

Then, using the fact that (Eqn. 2.6.14 of Polchinski),

[Q1, Q2] =
∮

dz2

2πi
Resz1→z2j1(z1)j2(z2), (4.22)

and the OPE

∂Xµ(z1)∂Xν(z2) ∼ − α′

2z2
12

(4.23)

we find that

[αµ
m, αν

n] =
∮

dz2

2πi
Resz1→z2j

µ
m(z1)jν

n(z2) = −
(

2
α′

) ∮
dz2

2πi
Resz1→z2z

m
1 ∂Xµ(z1)zn

2 ∂Xν(z2)

= −ηµν

(
2
α′

) ∮
dz2

2πi
Resz1→z2z

m
1 zn

2

(
− α′

2z2
12

)
= mηµν

∮
dz2

2πi
zn+m−1
2

= mηµνδm,−n.

(4.24)

The antiholomorphic part is essentially identical, and one can easily see that the antiholomorphic
and holomorphic charges commute as the operator products znz̄m∂X∂̄X are non-singular. Now,
we consider the commutation relation of the zero modes, pµ and xν . To do this, we first notice
that from above, we know that pµ =

(
2
α′

)1/2
αµ

0 commutes with all the αµ
m (and as its operator

products with antiholomorphic currents are non-singular, with their antiholomorphic counterparts
as well). Thus, using the fact that

Xµ(z, z̄) = xµ − i
α′

2
pµ log |z|2 + i

(
α′

2

)1/2 ∑
m6=0

1
m

(
αµ

m

zm
+

α̃µ
m

z̄m

)
, (4.25)

we see that
[pµ, Xν(z, z̄)] = [pµ, xµ] (4.26)

Then, we can use Eqn. 2.6.15 of Polchinski,

[Q,A(z2, z̄2)] = Resz1→z2j(z1)A(z2, z̄2) (4.27)

to compute this commutator. The current associated with pµ is just jpµ(z) =
(

2
α′

)1/2
jµ
0 (z) =

i
(

2
α′

)
∂Xν(z), and using the OPE,

∂Xν(z1)Xµ(z2, z̄2) = −ηµν α′

2z12
(4.28)

we find that,

[pµ, xν ] = [pµ, Xν(z2, z̄2)] = iResz1→z2

(
2
α′

)
∂Xµ(z1)Xν(z2, z̄2) = −iηµνResz1→z2

1
z12

= −iηµν .

(4.29)

One can proceed similarly for the bc theory, the currents are easily read off

bm =
∮

dz

2πi
zm+λ−1b(z) cn =

∮
dz

2πi
zn−λc(z), (4.30)
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and we can use the OPEs b(z)c(0) ∼ 1
z to easily read off the anticommutation relations,

{bm, cn} =
∮

dz2

2πi
Resz1→z2z

m+λ−1
1 b(z1)zn−λ

2 c(z2)

=
∮

dz2

2πi
Resz1→z2z

m+λ−1
1 zn−λ

2

(
1

z12

)
=

∮
dz2

2πi
zm+n−1
2

= δm,−n.

(4.31)

5. Problem 3.2 of Polchinski, Vol. 1:

(a) To find the number of components of a totally symmetric n-tensor in d-dimensions Ta1···an

define, we use the fact that the independent components of such a tensor are just the number
of different sequences,

a1 ≤ a2 ≤ · · · ≤ an ai ∈ 1, . . . , d. (4.32)

Of course, for d = 2, this is trivial, as each such sequence is uniquely characterized by the
number of 1’s it has, and so there are precisely n + 1 such sequences. Thus, the totally
symmetric tensor has n + 1 independent components. The condition that it be traceless
requires that all contractions with a metric vanish,

gaiaj Ta1···an
= 0 (4.33)

Now, by symmetry, this is equivalent to just the condition that

ga1a2Ta1a2···an
= 0 (4.34)

Further, by symmetry, these conditions are independent only for distinct sets of increasing
a3, . . . , an. Thus, the relations form a symmetric n− 2-tensor with n− 1 independent compo-
nents. This means that the symmetric traceless n-tensor has n + 1− (n− 1) = 2 independent
components.

(b) We can define a differential operator which takes a traceless symmetric n-tensor into a traceless
symmetric n + 1 tensor by taking the symmetrized covariant derivative of the tensor, and
subtracting off the trace. So for Ti1···in , define

(PnT )a0···an ≡
1
2n

n∑
i=1

(
∇a0Ta1···an +∇aiTa0a1···âi···an − ga0ai∇aT a

a1···âi···an

)
. (4.35)

This definition is clearly symmetric, and to see that it is traceless, we only need to consider
contractions with ga0aj for some j (all other traces vanish trivially since T is traceless and
the metric is covariantly constant). Consider this trace term by term in the above sum. If
j = i, then the first two terms are identical and cancel with the second since gabgab = 2 in
two dimensions. If j 6= i, using the fact that the metric is covariantly constant, we note that

ga0aj∇a0Ta1···an
= ∇a0T

a0
a1···âj ···an

(4.36)

ga0aj∇ai
Ta0a1···âi···an

= ∇ai
ga0aj Ta0a1···âi···an

= 0 (4.37)
ga0aj ga0ai

∇aT a
a1···âi···an

= ∇aT a
a1···âj ···an

(4.38)

and it is easy to see that the first and third terms are identical and therefore cancel, showing
that the trace does vanish.

(c) We define the PT
n as

(PT
n T )a1···an−1 ≡ −∇aT a

a1···an−1
(4.39)

Again, as g is covariantly constant, this is traceless.
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(d) Now, consider the n-tensor Ta1···an
and the n+1-tensor Sa0···an

. Introduce the inner product,

(T, T ′) =
∫

d2σg1/2T a1···anT ′
a1···an

. (4.40)

Then, we find that,

(S, PnT ) =
1
2n

∫
d2σg1/2Sa0···an

n∑
i=1

(
∇a0Ta1···an +∇aiTa0a1···âi···an − ga0ai∇aT a

a1···âi···an

)
=

1
2n

∫
d2σg1/2Sa0···an(2n)∇a0Ta1···an

= −
∫

d2σg1/2∇a0S
a0···anTa1···an

= (PT
n S, T ).

(4.41)

In going from the first to the second line, the tracelessness of S kills the third expression in
each term, and its symmetry equates all the remaining 2n terms. In the third line, we’ve used
integration by parts - the ordinary derivative acting on g1/2 exactly produces the extra term
needed to get the full covariant derivative acting on S.

6. Problem 3.8 of Polchinski, Vol. 1:

We would like to understand the conditions under which the renormalized vertex operators for
closed string massless states of the bosonic string in the Polyakov formalism are Weyl invariant on
a curved world sheet.

This will tell us which vertex operators we may consistently include in calculating scattering
amplitudes, and thereby characterize the possible massless asymptotic physical states in this model.
In addition we can imagine exponentiating these vertex operators to obtain coherent states which
can be inserted into the path integral to alter the background in which the strings propagate. If
the alteration to the background is small (so the wavelength or characteristic length scale Rc of the
variations in the fields represented by the operators is large compared to

√
α′), we may expand the

exponential in powers of
√

α′/Rc. The Weyl invariance of the vertex operators shows us that the
exponential insertion itself is Weyl invariant to first order. Thus, this calculation simultaneously
gives us knowledge to first order about consistent variations of the background in which the strings
propagate. Of course, these are just the equations of motion of the background fields to lowest
order.

In order to do this, we generalize the conformal normal ordering prescription to curved backgrounds
by using a manifestly Diff invariant renormalization prescription, where the renormalized operator
is given by (Eqn. 3.6.5 of Polchinski),

[F ]r = exp
(

1
2

∫
d2σ1d

2σ2∆(σ1, σ2)
δ

δXµ(σ1)
δ

δXµ(σ2)

)
F , (4.42)

and we’ve defined,

∆(σ1, σ2) =
α′

2
log d2(σ1, σ2), (4.43)

where d(σ1, σ2) is the geodesic distance between the points σ1 and σ2 on the worldsheet. Note that
the geodesic distance is well defined only locally on compact spaces where many geodesics may
connect a pair of points.1. However, as we are interested primarily in the short distance behavior

1Consider the north and south pole for S2 embedded in R3 - all longitudes are geodesics. Moreover, for compact spaces
with posive curvature metric, there exist geodesics which are not even local minima. For the sphere, take two points near
eachother and consider the geodesic that corresponds to going around the wrong way - this is clearly not even locally a
minimum of the distance function
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of the operators, this local definition suffices and we can restrict ourselves to a coordinate patch
small enough to pick a unique continuous definition of geodesic distance.

We note that while this renormalization prescription keeps Diff manifest, its explicit dependence
on the metric through the geodesic distance induces non-trivial quantum corrections to the Weyl
dependence of renormalized operators. Explicitly, the renormalization prescription gives rise to
additional Weyl dependence of operators through the relation (Polchinski, 3.6.7)

δW [F ]r = [δWF ]r +
1
2

∫
d2σ1d

2σ2δW ∆(σ1, σ2)
δ

δXµ(σ1)
δ

δXµ(σ2)
[F ]r. (4.44)

On a Riemann surface, we can always find local coordinates (via an appropriate Diff transforma-
tion) such that its metric is in conformal gauge. In conformal gauge, one can analyze the Weyl
variation of the geodesic distance, and obtain the result (Polchinski, 3.6.15),

∂aδW ∆(σ1, σ2)|σ1=σ2=σ =
1
2
∂aδω(σ) (4.45)

∂a∂′bδW ∆(σ1, σ2)|σ1=σ2=σ =
1 + γ

2
α′∇a∂bδω(σ) (4.46)

∇a∂bδW ∆(σ1, σ2)|σ1=σ2=σ = −γ

2
α′∇a∂bδω(σ). (4.47)

with γ = − 2
3 . Further, in conformal gauge, we use the fact that the Weyl variation of the Riemann

tensor is given by (Polchinski, 3.3.5):

δW (g1/2R) = −2g1/2∇2δω (4.48)

(to be posted in detail later)

7. Problem 3.9 of Polchinski, Vol. 1: (to be posted in detail later)
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