Measuring the CP Asymmetry in $\mathbf{B}_{\mathrm{d}} \rightarrow \pi \pi$ and $\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K K}$ Craig Blocker CDF 2/24/00

Extracting $\sin 2 \alpha$ from $B_{d} \rightarrow \pi \pi$ is complicated by backgrounds from $\mathbf{B}_{\mathbf{d}} \rightarrow \mathrm{K} \pi$ and $\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K} \pi$, KK.

However, these different modes have different CP asymmetry oscillation frequencies and different mass distributions, which allows them to be separated.

Generation and

 Simulation(1) Generate with Pythia $\left(|\eta|<3\right.$ and $\left.\mathbf{P}_{T}{ }^{\mathbf{B}}>\mathbf{0}\right)$
(2) Accept events with $|\eta|<1$,
$P_{T}{ }^{\text {track }}>400 \mathrm{MeV} / \mathrm{c}$, and $\mathrm{P}_{\mathrm{T}}{ }^{\mathrm{B}}>5 \mathrm{GeV} / \mathrm{c}$
(3) Smear P_{T} of each track by $0.001 P_{T}{ }^{2}$
(4) Generate decay time as exponential with lifetime of 1.5 ps and smear with
$\sigma_{\mathrm{t}}=0.05 \mathrm{ps}$
(5) Generate tag according to time dependent distribution with correct CP asymmetry
$\left[\mathrm{A}_{\text {dir }}^{\pi \pi}=\mathrm{A}_{\text {dir }}^{\mathrm{KK}}=0.4, \mathrm{~A}_{\text {mix }}^{\pi \pi}=\mathrm{A}_{\text {mix }}^{\mathrm{KK}}=0.7\right.$,
$x_{d}=0.7$, and $\left.x_{s}=25\right]$

Assume that resolutions scale with $\varepsilon \mathbf{D}^{2}$ of the tag.

Rates

From the CLEO's measured branching ratios for $B_{d} \rightarrow \pi \pi$ and $B_{d} \rightarrow K \pi$ and projections to B_{s} decays with small SU(3) corrections, we expect

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{d}} \rightarrow \pi \pi: \mathbf{B}_{\mathrm{d}} \rightarrow K \pi: \mathbf{B}_{\mathrm{s}} \rightarrow K \pi: \mathbf{B}_{\mathrm{s}} \rightarrow K \mathrm{~K} \\
& \quad=1: 4: 0.5: 2
\end{aligned}
$$

$\Rightarrow B_{d} \rightarrow \pi \pi$ is only about 15% of real two body B decays. $B_{s} \rightarrow K K$ is $\mathbf{2 5 \%}$. In limited mass range, fractions are higher.

Include background flat in mass with same non-oscillating liftetime as B 's at twice the $B_{d} \rightarrow \pi \pi$ rate in B_{d} mass range (5.24-5.34 GeV/c ${ }^{2}$)

Event Numbers

Assume 5,000 $B_{d} \rightarrow \pi \pi$ and $\varepsilon D^{2}=10 \%$ for tagging. Note that B_{s} tagging may differ from B_{d}, which is ignored here.

This gives the following numbers of events:

$$
\begin{array}{lr}
\mathbf{B}_{\mathrm{d}} \rightarrow \pi \pi & \mathbf{5 0 0} \\
\mathbf{B}_{\mathrm{d}} \rightarrow \mathbf{K} \pi & \mathbf{2 0 0 0} \\
\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K} \pi & \mathbf{2 5 0} \\
\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K K} & \mathbf{1 0 0 0}
\end{array}
$$

Background 5000 from 5.0 to $5.5 \mathrm{GeV} / \mathrm{c}^{2}$

Mass Distributions

Mass Distributions

CP Decay Asymmetries

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{B}_{\mathrm{d}}\left(\overline{\mathbf{B}}_{\mathrm{d}}\right) \rightarrow \pi \pi}=\frac{\Gamma}{\mathbf{2}}\left[\begin{array}{c}
\mathbf{1 m} \mathbf{A}_{\text {mix }}^{\pi \pi} \sin \left(\Delta \mathbf{m}_{\mathrm{d}} \mathbf{t}\right) \\
\mathrm{m} \mathbf{A}_{\mathrm{dir}}^{\pi \pi} \cos \left(\Delta \mathbf{m}_{\mathrm{d}} \mathbf{t}\right)
\end{array}\right] \mathbf{e}^{-\Gamma \mathrm{t}} \\
& \mathbf{P}_{\mathbf{B}_{\mathrm{d}}\left(\overline{\mathbf{B}}_{\mathrm{d}}\right) \rightarrow \mathrm{K} \pi}=\frac{\Gamma}{\mathbf{2}} \mathbf{e}^{-\Gamma \mathrm{rt}} \\
& \mathbf{P}_{\mathbf{B}_{\mathrm{s}}\left(\overline{\mathbf{B}}_{\mathrm{s}}\right) \rightarrow \mathrm{KK}}=\frac{\Gamma}{\mathbf{2}}\left[\begin{array}{c}
\mathbf{1} \mathrm{m} \mathbf{A}_{\text {mKix }}^{\mathrm{KK}} \sin \left(\Delta \mathbf{m}_{\mathrm{s}} \mathbf{t}\right) \\
\mathrm{m} \mathbf{A}_{\mathrm{dir}}^{\mathrm{KK}} \cos \left(\Delta \mathbf{m}_{\mathbf{s}} \mathbf{t}\right)
\end{array}\right] \mathbf{e}^{-\Gamma \mathrm{t}} \\
& \mathbf{P}_{\mathbf{B}_{s}\left(\overline{\mathbf{B}}_{\mathrm{s}}\right) \rightarrow \mathrm{K} \pi}=\frac{\Gamma}{\mathbf{2}} \mathbf{e}^{-\Gamma \mathrm{t}}
\end{aligned}
$$

If there are no penguin amplitudes,
$A_{\text {mix }}^{\pi \pi}=\sin (2 \alpha), A_{\text {mix }}^{\mathrm{KK}}=\sin (2 \gamma)$, and
$\mathbf{A}_{\text {dir }}^{\pi \pi}=\mathbf{A}_{\text {dir }}^{K K}=\mathbf{0}$.

Log Likelihood Function

$$
\ln \mathbf{L}=\sum_{\text {events }} \ln \left\{(\mathbf { 1 } - \mathbf { f } _ { \mathbf { B } }) \left[\mathbf { f } _ { \pi \pi } \mathbf { G } \left(\mathbf{M}_{\pi \pi} ; \mathbf{M}_{\mathbf{B}_{\mathbf{d}}}, \sigma_{\pi \pi} \tilde{\mathbf{P}}_{\pi \pi}^{\mathrm{d}}(\mathbf{t})+\right.\right.\right.
$$

$$
\mathbf{f}_{K \pi}^{d} \mathbf{G}\left(\mathbf{M}_{\pi \pi} ; \overline{\mathbf{M}}_{\mathbf{K} \pi}^{\mathrm{d}}, \sigma_{\mathrm{K} \pi}^{\mathrm{d}} \tilde{\mathbf{P}}_{\mathbf{K} \pi}^{\mathrm{d}}(\mathbf{t})+\right.
$$

$$
\mathbf{f}_{\mathbf{K} \pi}^{s} \mathbf{G}\left(\mathbf{M}_{\pi \pi} ; \overline{\mathbf{M}}_{\mathbf{K} \pi}^{s}, \sigma_{\mathbf{K} \pi}^{s}\right) \tilde{\mathbf{P}}_{\mathbf{K} \pi}^{s}(\mathbf{t})+
$$

$$
\left.\mathbf{f}_{\mathbf{K K}}^{s} \mathbf{G}\left(\mathbf{M}_{\pi \pi} ; \overline{\mathbf{M}}_{\text {KK }}, \sigma_{\text {KK }}^{s}\right) \tilde{\mathbf{P}}_{\text {KK }}^{s}(\mathbf{t})\right]+
$$

$$
\left.\mathbf{f}_{\mathbf{B}} \tilde{\mathbf{P}}_{\mathrm{BG}}(\mathbf{t})\right\}
$$

Assume that we know f's, M's, $\sigma^{‘} s$, $\Gamma^{‘}$ s, and $\Delta \mathrm{m}$'s well. $\ln \mathrm{L}$ is then function of the A 's.

Likelihood Contours

Likelihood Contours

$\mathbf{A}_{\text {mix }}(\pi \pi)$ Resolutions

$\mathbf{A}_{\text {dir }}(\pi \pi)$ Resolutions

$\mathbf{A}_{\text {mix }}(K K)$ Resolutions

$\mathbf{A}_{\text {dir }}(\mathbf{K K})$ Resolutions

Extracting α and γ from $\mathbf{B}_{\mathrm{d}} \rightarrow \pi \pi$ and $\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K K}$

R. Fleischer has suggested a method of extracting α and γ from $B_{d} \rightarrow \pi \pi$ and $B_{s} \rightarrow$ KK decays that resolves penguin contributions. Frank Wuerthwein will discuss this.

Conclusions

(1) CDF will measure the direct and mixing CP asymmetries in $B_{d} \rightarrow \pi \pi$ and $B_{s} \rightarrow K K$ to about 0.1 to 0.15 in $\mathbf{2 ~ f b}{ }^{-1}$.
(2) It may be possible to resolve the contributions of penguin diagrams to get measurements of α and γ.

