Measuring the CP Asymmetry in $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ Craig Blocker CDF 2/24/00

Extracting sin 2α from $B_d \rightarrow \pi\pi$ is complicated by backgrounds from $B_d \rightarrow K\pi$ and $B_s \rightarrow K\pi$, KK.

However, these different modes have different CP asymmetry oscillation frequencies and different mass distributions, which allows them to be separated.

Generation and Simulation

- **O** Generate with Pythia ($|\eta| < 3$ and $P_T^B > 0$)
- **2** Accept events with $|\eta| < 1$, $P_T^{track} > 400 \text{ MeV/c}$, and $P_T^B > 5 \text{ GeV/c}$
- **3** Smear P_T of each track by 0.001 P_T^2
- Generate decay time as exponential with lifetime of 1.5 ps and smear with σ_t = 0.05 ps
- Generate tag according to time dependent distribution with correct CP asymmetry
 [A^{ππ}_{dir} = A^{KK}_{dir} = 0.4, A^{ππ}_{mix} = A^{KK}_{mix} = 0.7,
 x_d = 0.7, and x_s = 25]

Assume that resolutions scale with εD² of the tag.

Rates

From the CLEO's measured branching ratios for $B_d \rightarrow \pi\pi$ and $B_d \rightarrow K\pi$ and projections to B_s decays with small SU(3) corrections, we expect

 $B_{d} \rightarrow \pi\pi : B_{d} \rightarrow K\pi : B_{s} \rightarrow K\pi : B_{s} \rightarrow KK$ = 1 : 4 : 0.5 : 2

 $\Rightarrow B_d \rightarrow \pi\pi \text{ is only about 15\% of real}$ two body B decays. $B_s \rightarrow KK$ is 25%. In limited mass range, fractions are higher.

Include background flat in mass with same non-oscillating liftetime as B's at twice the $B_d \rightarrow \pi\pi$ rate in B_d mass range (5.24-5.34 GeV/c²)

Event Numbers

Assume 5,000 $B_d \rightarrow \pi\pi$ and $\varepsilon D^2 = 10\%$ for tagging. Note that B_s tagging may differ from B_d , which is ignored here.

This gives the following numbers of events:

 $B_d \rightarrow \pi \pi$ $B_d \rightarrow K \pi$ $B_s \rightarrow K \pi$ $B_s \rightarrow K K$

Background 5000 from 5.0 to 5.5 GeV/c²

Mass Distributions

Mass Distributions

CP Decay Asymmetries

$$\begin{split} \mathbf{P}_{\mathbf{B}_{d}\left(\overline{\mathbf{B}}_{d}\right)\to\pi\pi} &= \frac{\Gamma}{2} \begin{bmatrix} \mathbf{1} \operatorname{m} \mathbf{A}_{\mathrm{mix}}^{\pi\pi} \sin(\Delta \mathbf{m}_{d} t) \\ \operatorname{m} \mathbf{A}_{\mathrm{dir}}^{\pi\pi} \cos(\Delta \mathbf{m}_{d} t) \end{bmatrix} \mathbf{e}^{-\Gamma t} \\ \mathbf{P}_{\mathbf{B}_{d}\left(\overline{\mathbf{B}}_{d}\right)\to K\pi} &= \frac{\Gamma}{2} \mathbf{e}^{-\Gamma t} \\ \mathbf{P}_{\mathbf{B}_{s}\left(\overline{\mathbf{B}}_{s}\right)\to KK} &= \frac{\Gamma}{2} \begin{bmatrix} \mathbf{1} \operatorname{m} \mathbf{A}_{\mathrm{mix}}^{KK} \sin(\Delta \mathbf{m}_{s} t) \\ \operatorname{m} \mathbf{A}_{\mathrm{dir}}^{KK} \cos(\Delta \mathbf{m}_{s} t) \end{bmatrix} \mathbf{e}^{-\Gamma t} \\ \mathbf{P}_{\mathbf{B}_{s}\left(\overline{\mathbf{B}}_{s}\right)\to K\pi} &= \frac{\Gamma}{2} \mathbf{e}^{-\Gamma t} \end{split}$$

If there are no penguin amplitudes, $A_{mix}^{\pi\pi} = \sin(2\alpha), A_{mix}^{KK} = \sin(2\gamma), \text{ and}$ $A_{dir}^{\pi\pi} = A_{dir}^{KK} = 0.$

Log Likelihood Function

$$\begin{split} \ln L &= \sum_{events} \, ln \big\{ (1 - f_B) [f_{\pi\pi} G(M_{\pi\pi}; M_{B_d}, \sigma_{\pi\pi}) \tilde{P}^d_{\pi\pi}(t) + \\ & f^d_{K\pi} G(M_{\pi\pi}; \overline{M}^d_{K\pi}, \sigma^d_{K\pi}) \tilde{P}^d_{K\pi}(t) + \\ & f^s_{K\pi} G(M_{\pi\pi}; \overline{M}^s_{K\pi}, \sigma^s_{K\pi}) \tilde{P}^s_{K\pi}(t) + \\ & f^s_{KK} G(M_{\pi\pi}; \overline{M}_{KK}, \sigma^s_{KK}) \tilde{P}^s_{KK}(t)] + \\ & f_B \tilde{P}_{BG}(t) \big\} \end{split}$$

Assume that we know f's, M's, σ 's, Γ 's, and Δ m's well. In L is then function of the A's.

Likelihood Contours

Likelihood Contours

$A_{mix}(\pi\pi)$ Resolutions

$A_{dir}(\pi\pi)$ Resolutions

A_{mix}(KK) **Resolutions**

A_{dir}(**KK**) **Resolutions**

Extracting α and γ from $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$

R. Fleischer has suggested a method of extracting α and γ from $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ decays that resolves penguin contributions. Frank Wuerthwein will discuss this.

Conclusions

- CDF will measure the direct and mixing CP asymmetries in $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ to about 0.1 to 0.15 in 2 fb⁻¹.
- It may be possible to resolve the contributions of penguin diagrams to get measurements of α and γ.