B Physics: QCD Monte Carlo Model Predictions

Run 2 Workshop on QCD CDF B-Group Meeting Run 2 Workshop of B Physics

Rick Field - University of Florida

and

Keith Ellis - Fermilab

http://www.phys.ufl.edu/~rfield/cdf/Bplots_feb25.pdf

Goals:

- Compare the LO parton level predictions of Herwig, Isajet, and Pythia with the NLO MRSR2 predictions.
- Compare the LO parton level predictions with the LO hadron level predictions (Herwig, Isajet, Pythia).
- Compare the LO hadron level predictions of Herwig, Isajet, and Pythia.
 63 Plots!

Outline:

- Integrated Cross Sections (parton level)
- Transverse Momentum Distributions (parton level)
- Pseudo-Rapidity & Rapidity Distributions (parton level)
- Integrated Cross Sections (hadron level)
- Transverse Momentum Distributions (hadron level)
- PT Distributions Parton/Hadron (fragmentation)
- Strange Quark Production fs/(fu+fd) (fragmentation)
- Y and **h** Distributions Hadron versus Parton
- Comparisons between 1.8 TeV and 2.0 TeV
- Azimuthal **Df** Correlations Hadron and Parton
- PT Correlations Hadron and Parton (PT₁-PT₂)
- Pseudo-Rapidity Correlations: ds/dh₁dh₂ & R(h₁,h₂)

This Talk

QCD Monte Carlo Models (default parameters): Herwig 5.9 (DO1.1, **L** = 0.18 GeV) Isajet 7.32 (CTEQ3L, **L** = 0.20 GeV) Pythia 6.115 (GRV94LO, **L** = 0.23 GeV) Pythia 6.115 (CTEQ3L, **L** = 0.18 GeV)

 ∂

Parton Level: Integrated b-quark Cross Section for PT > PTmin

Plot shows **s**(PT>PTmin) (in **mb**) for b-quarks at 1.8 TeV (all Y).

Plot shows **s**(PT>PTmin) (in **mb**) for b-quarks at 1.8 TeV (all Y). Herwig, Isajet, and Pythia have been increased by a factor of **two**.

Parton Level: Ratio MRSR2/Monte-Carlos

Plot shows the ratio of **s**(PT>PTmin) for b-quarks at 1.8 TeV (all Y) from MRSR2 to Herwig, Isajet, Pythia, and PythiaC3L.

Parton Level: Integrated b-quark Cross Section for PT > PTmin

Plot shows **s**(PT>PTmin) (in **mb**) for b-quarks at 1.8 TeV (|Y|<1).

Plot shows s(PT>PTmin) (in **mb**) for b-quarks at 1.8 TeV (|Y|<1). MRSR2 has been increased by a factor of two and Herwig, Isajet, and Pythia have been increased by a factor of four.

Parton Level: Ratio MRSR2/Monte-Carlos

Plot shows the ratio of s(PT>PTmin) for b-quarks at 1.8 TeV (|Y| < 1) from MRSR2 to Herwig, Isajet, and Pythia.

Plot shows the fraction |Y| < 1 of the b-quark integrated cross section (PT < PTmin).

Parton Level: Fraction |**h**| < 1 of the b-quark Cross Section

Plot shows the fraction $|\mathbf{h}| < 1$ of the b-quark integrated cross section (PT < PTmin).

B Physics: PT Distributions

Parton Level: Transverse Momentum Distribution ($|\mathbf{h}| < 1$)

Plot shows ds/dPT (in mb/GeV) for b-quarks at 1.8 TeV (|h|<1).

Parton Level: Transverse Momentum Distribution (|**h**| < 1)

Plot shows the ratio of ds/dPT for b-quarks at 1.8 TeV ($|\mathbf{h}| < 1$) from MRSR2 to Herwig, Isajet, and Pythia.

B Physics: Pseudo-Rapidity Distributions

Parton Level: Pseudo-Rapidity Distributions (PT > 5 GeV)

Plot shows ds/dh (in **mb**) for b-quarks at 1.8 TeV (PT > 5 GeV).

Parton Level: Pseudo-Rapidity Distributions (PT > 5 GeV)

Plot shows (1/N)dN/dh (normalized to 1) for b-quarks at 1.8 TeV (PT > 5 GeV).

B Physics: Rapidity Distributions

Parton Level: Rapidity Distributions (PT > 5 GeV)

Plot shows ds/dY (in **mb**) for b-quarks at 1.8 TeV (PT > 5 GeV).

Parton Level: Rapidity Distributions (PT > 5 GeV)

Plot shows (1/N)dN/dY (normalized to 1) for b-quarks at 1.8 TeV (PT > 5 GeV).

Plot shows $\mathbf{s}(\text{PT>PTmin})$ (in **mb**) for B-mesons (B^+, B^0, B_s^0) and b-quarks at 1.8 TeV $(|\mathbf{h}| < 1)$.

Hadron Level: Integrated B-quark Cross Section for PT > PTmin

Plot shows $\mathbf{s}(PT>PTmin)$ (in **mb**) for B-mesons (B^+, B^0, B_s^0) from b and t-quarks 1.8 TeV ($|\mathbf{h}| < 1$).

B Physics: PT Distributions

Parton & Hadron Level: Transverse Momentum Distribution (|**h**| < 1)

Plot shows ds/dPT (in mb/GeV) for B-mesons (B^+, B^0, B_s^0) and for the b-quark at 1.8 TeV (|h|<1).

Hadron/Parton Level: Transverse Momentum Distribution ($|\mathbf{h}| < 1$)

Plot shows the ratio of ds/dPT ($|\mathbf{h}| < 1$) for B-mesons (B⁺,B⁰,B_s⁰) to b-quark at 1.8 TeV.

B Physics: PT Distributions

Plot shows ds/dPT (in mb/GeV) for B^+ mesons at 1.8 TeV (|Y| < 1).

Plot shows ds/dPT (in mb/GeV) for B^+ mesons at 1.8 TeV (|Y| < 1). The QCD Monte-Carlo predictions have been increased by a factor of four.

B Physics: Fragmentation

	CDF Run I	Old FF
fu	0.408+/-0.068	0.4
fd	0.344+/-0.039	0.4
fs	0.159+/-0.026	0.2
fbaryon	0.089+/-0.029	0.0
fs/(fu+fd)	0.213+/-0.068	0.25

Hadron Level: fs/(fu+fd) Ration versus PT ($|\mathbf{h}| < 1$)

Plot shows the ratio fs/(fu+fd) at 1.8 TeV ($|\mathbf{h}| < 1$), where fs = ds/dPT(B_s⁰), fu = ds/dPT(B⁺), and fd = ds/dPT(B⁰).

B Physics: Y and **h** Distributions

Parton & Hadron Level: Pseudo-Rapidity Distribution

Plot shows (1/N)dN/dh (normalized to 1) for B-mesons (B^+, B^0, B_s^0) and for the bquark at 1.8 TeV (PT > 5 GeV and PT > 10 GeV).

Parton & Hadron Level: Rapidity Distribution

Plot shows (1/N)dN/dY (normalized to 1) for B-mesons (B^+, B^0, B_s^0) and for the bquark at 1.8 TeV (PT > 5 GeV and PT > 10 GeV).

B Physics: Y and **h** Distributions

Parton & Hadron Level: Pseudo-Rapidity Distribution

Plot shows (1/N)dN/dh (normalized to 1) for B-mesons (B^+, B^0, B_s^0) and for the bquark at 1.8 TeV (PT > 5 GeV and PT > 10 GeV).

Parton & Hadron Level: Rapidity Distribution

Plot shows (1/N)dN/dY (normalized to 1) for B-mesons (B^+, B^0, B_s^0) and for the bquark at 1.8 TeV (PT > 5 GeV and PT > 10 GeV).

B Physics: Y and **h** Distributions

Parton & Hadron Level: Pseudo-Rapidity Distribution

Plot shows (1/N)dN/dh (normalized to 1) for B-mesons (B^+, B^0, B_s^0) and for the bquark at 1.8 TeV (PT > 5 GeV and PT > 10 GeV).

Parton & Hadron Level: Rapidity Distribution

Plot shows (1/N)dN/dY (normalized to 1) for B-mesons (B^+, B^0, B_s^0) and for the bquark at 1.8 TeV (PT > 5 GeV and PT > 10 GeV).

Parton Level: Azimuthal **Df** Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = b-quark and 2 = bbar-quark at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and $PT_1 > 5$ GeV.

Hadron Level: Azimuthal **Df** Distribution

Measures intrensic PT, gluon radiation. fragmentation.

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = B-mesons (B⁺, B⁰, B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and PT₁ > 5 GeV.

Parton & Hadron Level: Azimuthal **Df** Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B⁺, B⁰, B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and $PT_1 > 5$ GeV.

Parton & Hadron Level: Azimuthal Df Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B⁺, B⁰, B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and PT₁ > 5 GeV.

Hadron Level: Azimuthal Df Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = B-mesons (B⁺, B⁰, B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and PT₁ > 5 GeV.

Hadron Level: Azimuthal Df Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = B-mesons (B⁺,B⁰,B⁰_s) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and PT₁ > 5, 10, and 25 GeV.

Hadron Level: Azimuthal Df Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 - \mathbf{f}_1|$ for 1 = B-mesons (B⁺, B⁰, B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and PT₁ > 5, 10, and 25 GeV.

Hadron Level: Azimuthal Df Distribution

Plot shows (1/N)dN/d**Df** (normalized to 1), where **Df** = $|\mathbf{f}_2 \cdot \mathbf{f}_1|$ for 1 = B-mesons (B⁺,B⁰,B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, and PT₁ > 10 GeV.

Parton Level: Transverse Momentum Correlations

Plot shows ds/dDPT (mb/GeV), where DPT = PT₁-PT₂ for 1 = b-quark and 2 = bbar-quark at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, and PT₂ > 5 GeV.

Parton Level: Transverse Momentum Correlations

Plot shows (1/N)dN/d**D**PT (1/GeV), where **D**PT = PT₁-PT₂ for 1 = b-quark and 2 = bbar-quark at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, and PT₂ > 5 GeV.

Measures intrensic PT, gluon radiation, and fragmentation.

Hadron Level: Transverse Momentum Correlations/

Plot shows (1/N)dN/d**D**PT (1/GeV), where **D**PT = PT₁-PT₂ for 1 = B-mesons (B^+, B^0, B_s^0) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, and PT₂ > 5 GeV.

Parton & Hadron Level: Transverse Momentum Correlations

Plot shows (1/N)dN/d**D**PT (1/GeV), where **D**PT = PT₁-PT₂ for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B^+, B^0, B_s^{0}) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^{\circ}$, and PT₂ > 5 GeV.

Parton & Hadron Level: Transverse Momentum Correlations

Plot shows (1/N)dN/d**D**PT (1/GeV), where **D**PT = PT₁-PT₂ for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B^+ , B^0 , B_s^0) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, and PT₂ > 5 and 10 GeV.

Parton & Hadron Level: Transverse Momentum Correlations

Plot shows (1/N)dN/d**D**PT (1//GeV), where **D**PT = PT₁-PT₂ for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B^+, B^0, B_s^{-0}) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^{\circ}$, and PT₂ > 5 and 10 GeV.

Hadron Level: Transverse Momentum Correlations

Plot shows (1/N)dN/d**D**PT (1/GeV), where **D**PT = PT₁-PT₂ for 1 = B-mesons (B⁺,B⁰,B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1-\mathbf{f}_2| > 90^{\circ}$, and PT₂ > 5 GeV.

Plot shows (1/N)dN/d**D**PT (1/GeV), where **D**PT = PT₁-PT₂ for 1 = B-mesons (B⁺,B⁰,B_s⁰) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_1| < 1$, $|\mathbf{h}_2| < 1$, $|\mathbf{f}_1-\mathbf{f}_2| > 90^{\circ}$, and PT₂ > 10 GeV.

Double-Differential Cross Section

Correlation Functions: $C(\boldsymbol{h}_1, \boldsymbol{h}_2) = \frac{1}{\boldsymbol{s}} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1 d\boldsymbol{h}_2} - \frac{1}{\boldsymbol{s}^2} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_2}$

"Normalized" Correlation Functions:

$$R(\boldsymbol{h}_1, \boldsymbol{h}_2) = \left(\frac{1}{\boldsymbol{s}} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1 d\boldsymbol{h}_2} - \frac{1}{\boldsymbol{s}^2} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_2}\right) / \left(\frac{1}{\boldsymbol{s}^2} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_2}\right)$$

"Integrated" (a < **h**₂ < b) Normalized Correlation Functions:

$$R(\boldsymbol{h}_1) = \int_a^b \left(\frac{1}{\boldsymbol{s}} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1 d\boldsymbol{h}_2} - \frac{1}{\boldsymbol{s}^2} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_2} \right) d\boldsymbol{h}_2 \Big/ \int_a^b \left(\frac{1}{\boldsymbol{s}^2} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_1} \frac{d\boldsymbol{s}}{d\boldsymbol{h}_2} \right) d\boldsymbol{h}_2$$

Hadron Level: Pseudo-Rapidity Correlations ($|\mathbf{h}_2| < 0.5$)

Plot shows $(1/\mathbf{s})d\mathbf{s}/d\mathbf{h}_1d\mathbf{h}_2$ versus \mathbf{h}_1 , for 1 = B-mesons (B^+, B^0, B_s^0) and 2 = Bbarmesons at 1.8 TeV with $|\mathbf{h}_2| < 0.5$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.

Hadron Level: Pseudo-Rapidity Correlations $(1 < |\mathbf{h}_2| < 2)$

Measures PDF's, fragmentation.

Plot shows $(1/\mathbf{s})d\mathbf{s}/d\mathbf{h}_1d\mathbf{h}_2$ versus \mathbf{h}_1 , for 1 = B-mesons (B^+, B^0, B_s^0) and 2 = Bbarmesons at 1.8 TeV with $1 < |\mathbf{h}_2| < 2$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.

Plot shows $(1/\mathbf{s})d\mathbf{s}/d\mathbf{h}_1d\mathbf{h}_2$ versus \mathbf{h}_1 , for 1 = B-mesons (B^+, B^0, B_s^0) and 2 = Bbarmesons at 1.8 TeV with $1 < |\mathbf{h}_2| < 2$, $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, $PT_1 > 10$ GeV, and $PT_2 > 10$ GeV.

Parton & Hadron Level: Pseudo-Rapidity Correlations

Plot shows $(1/s)ds/dh_1dh_2$ versus h_1 , for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B^+, B^0, B_s^{0}) and 2 = Bbar-mesons at 1.8 TeV with $|h_2| < 0.5$ and with $1 < h_2 < 2$ and $|f_1-f_2| > 90^0$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.

Parton & Hadron Level: Pseudo-Rapidity Correlations

Plot shows $(1/\mathbf{s})d\mathbf{s}/d\mathbf{h}_1d\mathbf{h}_2$ versus \mathbf{h}_1 , for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B^+, B^0, B_s^{-0}) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_2| < 0.5$ and with $1 < \mathbf{h}_2 < 2$ and $|\mathbf{f}_1 - \mathbf{f}_2| > 90^\circ$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.

Parton & Hadron Level: Pseudo-Rapidity Correlations

Plot shows $(1/\mathbf{s})d\mathbf{s}/d\mathbf{h}_1d\mathbf{h}_2$ versus \mathbf{h}_1 , for 1 = b-quark and 2 = bbar-quark and for 1 = B-mesons (B^+, B^0, B_s^{-0}) and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_2| < 0.5$ and with $1 < \mathbf{h}_2 < 2$ and $|\mathbf{f}_1 - \mathbf{f}_2| > 90^0$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.

B Physics: Correlation Functions

Hadron Level: "Normalized" Correlation Function

Plot shows the normalized correlation function $R(\mathbf{h}_1)$ versus \mathbf{h}_1 , for 1 = B-mesons $(B^+, B^0, B_s^{\ 0})$ and 2 = Bbar-mesons at 1.8 TeV with $|\mathbf{h}_2| < 0.5$ and $|\mathbf{f}_1 - \mathbf{f}_2| > 90^{\ 0}$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.

Hadron Level: "Normalized" Correlation Function

Plot shows the normalized correlation function $R(\mathbf{h}_1)$ versus \mathbf{h}_1 , for 1 = B-mesons (B^+, B^0, B_s^0) and 2 = Bbar-mesons at 1.8 TeV with $1 < \mathbf{h}_2 < 2$ and $|\mathbf{f}_1 - \mathbf{f}_2| > 90^0$, $PT_1 > 5$ GeV, and $PT_2 > 5$ GeV.