Studies of $\sin(2\beta)$ via $B \rightarrow J/\psi + K_s$ at DØ

Kin Yip Fermilab

Introduction lepton triggering offline reconstruction $\delta(\sin(2\beta))$ estimation

MCFAST and *Full GEANT/Reco*

Run II B Physics Workshop, Feb. 24, 2000

Introduction

Asymmetry (in the Standard Model) is directly related to $sin 2\beta$:

$$A_{CP}(t) = \frac{\Gamma\left(\overline{B^0} \to J/\psi K_S^0\right) - \Gamma\left(B^0 \to J/\psi K_S^0\right)}{\Gamma\left(\overline{B^0} \to J/\psi K_S^0\right) + \Gamma\left(B^0 \to J/\psi K_S^0\right)} = \sin(2\beta)\sin(\Delta m_d t)$$

This is a very good channel due to:

- readily accessible final states with small background
- relatively large branching ratio
- negligible theoretical uncertainty
 - penguin amplitude is expected to be small since cc pair must be popped from vacuum
 - penguin diagram contribution to the asymmetry has the same phase as tree level

DØ Upgraded Detector Performance

- Good Momentum resolution:
 - $dp_T/p_T^2 = 0.002$ (Silicon+Fiber tracker)
- High tracking efficiency:
 - at least 95 % $|\eta| < 3.5$ (disks)
- Vertex Reconstruction:
 - primary vertex: $\sigma^{\text{vertex}} = 15-30 \,\mu\text{m} \,(\text{r-}\phi)$
 - secondary vertex: $\sigma^{vertex} = 40 \ \mu m (r-\phi)$, 100 $\mu m (r-z)$
- Excellent lepton coverage, trigger and ID efficiency:
 - muons: $p_T > 1.5$ GeV, $|\eta| < 2$
 - electrons: $p_T > 1.5$ GeV, $|\eta| < 2.5$
- Impact parameter trigger

Sin(2 β) via $B \rightarrow J/\psi + K_S$

Strength of DØ

Depend on lepton identification and triggering:

- Electron ID and triggering:
 - excellent calorimetry and coverage
 - new central scintillating fiber tracker (CFT)
 - pre-shower detectors
- Muons :
 - good muon coverage and purity
 - enhanced muon triggering using track seeds from CFT

Muon Triggers

Di-electron Trigger

2.5

5

10

 $M(e^{-},e^{+}) (GeV/c^{2})$

Two electrons each with $p_T > 2 \text{ GeV/c}$

- relies on pre shower CAL match to reduce background
- also cut on opposite sign, ΔR , and invariant mass at level 2
- level 2 rate ~ 200 Hz and efficiency ~20%

- two muon tracks
 - $p_T > 1.5 \text{ GeV}$
 - $|\eta| < 2$
 - 85% efficiency

MCFAST

It looks like we can reconstruct $K_S \to \pi^+ \pi^-$.

MCFAST

$K_S \rightarrow \pi^+ \pi^-$

- $P_T(\pi) > 0.4 \text{ GeV/c}$
- $|\eta_{\pi}| < 1.7$
- $L_{xy}/\sigma > 5$
- efficiency ~ 27 %

$B \rightarrow J/\psi K_s$ decay length reconstruction

- Two secondary two-track vertices
- Average *B* decay length: 2.3 mm
- Measured decay length resolution: 100 μm
- Measured time resolution:120 ps

- $J/\psi \rightarrow \mu^+\mu^-$ require two tracks with $p_T > 1.5$ GeV/c
- $K_S \rightarrow \pi^+ \pi^-$ use long lifetime to reject background: $L_{xy}/\sigma > 5$
- Perform 4-track fit assuming $B \rightarrow J/\psi + K_S$
 - constrain $\pi \pi$ and $\mu \mu$ to mass of K_s and J/ψ respectively
 - force K_S to point to B vertex and B to point to primary

Flavor Tagging

Opposite side tags:

- identify the flavor of the other *B* in the event
 - soft lepton tags $b \rightarrow l^- + X$
 - jet charge tags $Q_{jet} < 0$ for b

Efficiency (\mathcal{E}) and dilution factor (\mathcal{D}) $\mathcal{D} = 2 \mathcal{P} - 1$ \mathcal{P} is the correct tag probability $\mathcal{E} \mathcal{D}^2$ is the tag's effectiveness

Same side tags:

• correlation of flavor and charge of closest particle produced in fragmentation or decay

Flavor Tagging

Tag	εD^2 (%) measured CDF Run I	εD^2 (%) expected CDF Run II	Relevant DØ difference	DØ capabilities
Same side	$1.8 \pm 0.4 \pm 0.3$	2.0	same	2.0
Soft lepton	$0.9 \pm 0.1 \pm 0.1$	1.7	μ, e ID coverage	3.1
Jet charge	$0.8 \pm 0.1 \pm 0.1$	3.0	forward tracking	4.7
Opp. side <i>K</i>		2.4	no ToF	none
Combined		9.1		9.8

How many **B**_d may we get ?

$$\sigma_{b\bar{b}} = 3.3 \times 48 \,\mu b = 158 \,\mu b$$

$$f(b \rightarrow B_d) = 0.42$$
Acceptance $: P_T(B) > 4 \text{ GeV}/c, |y(B)| < 3.0 = 31\%$

$$\sigma_B = \sigma_{b\bar{b}} \cdot f \cdot Acc = 21 \,\mu b$$

$$BR = BR(B \rightarrow J/\psi + K_s, J/\psi \rightarrow \mu^+ \mu^-, K_s \rightarrow \pi^+ \pi^-)$$

$$= (5 \times 10^{-4})(0.06)(0.68) = (2 \times 10^{-5})$$

$$\mathcal{E}trigger = 0.27$$

$$\mathcal{E}reco = 0.09$$

$$N = L \cdot 2 \cdot \sigma_B \cdot BR \cdot \mathcal{E}trigger \cdot \mathcal{E}reco = 40 \text{ K}$$

$$assuming luminosity \sim 2 \text{ fb}^{-1}$$

Sin2 B Expectations for 2fb⁻¹

For a *time dependent* analysis:

$$\sigma(\sin 2\beta) \approx e^{x_d^2 \Gamma^2 \sigma_t^2} \sqrt{\frac{1+4x_d^2}{2x_d}} \frac{1}{\sqrt{\varepsilon D^2 N}} \sqrt{1+\frac{B}{S}}$$

- (S/B ~ 0.75)
- $\varepsilon D^2 \sim 9.8 \%$
- σ_t ~ 128 fs

mode	$J/\psi \rightarrow \mu^+ \mu^-$	$J/\psi \rightarrow e^+e^-$	
trigger eff. (%)	27	20	
reco'd events	40,000	30,000	
-(aire 2R)	0.04	0.05	
$\sigma(\sin 2\rho)$	0.03		

assuming luminosity ~ 2 fb⁻¹