Update on $\Delta \Gamma_{B_s}$ Prospects for RunII

M.Martin (CDF/Oxford) Jeff Tseng (MIT)

$\Delta \Gamma_{B_s}$

- What is it, and why is it significant?
- How could we attempt to measure it at RunII?
- How well do we expect to do?
- What issues need to be addressed?

$\Delta \Gamma_{B_s}$: A brief reminder

- The width difference in the B_s system.
- The weak interaction eigenstates, $|B_s, L\rangle$, $|B_s, H\rangle$

are what decay.

 $|B_{s},L\rangle = p|B_{s}\rangle + q|\overline{B_{s}}\rangle |B_{s}\rangle, |\overline{B_{s}}\rangle \text{ strong interaction eigenstates} |B_{s},H\rangle = p|B_{s}\rangle - q|\overline{B_{s}}\rangle$

 $\Delta \Gamma_{B_s} = \Gamma_H - \Gamma_L$

Why is $\Delta \Gamma_s$ significant?

- SM prediction: $x_s = C \frac{\Delta \Gamma_{B_s}}{\overline{\Gamma_{B_s}}} \qquad \left(\text{where } x_s = \frac{\Delta m_{B_s}}{\overline{\Gamma_{B_s}}} \text{ and } \overline{\Gamma_{B_s}} = \frac{1}{2} (\Gamma_H + \Gamma_L) \right)$
- Uncertainty in C dominated by uncertainty in: the ratio of "bag constants".
- Favoured method of predicting C is lattice gauge theory.
- Beyond SM, above relation may well not hold.
- CDF expects to measure x_s over SM range.
- So what would be the significance of a measurement of $\Delta\Gamma_{B_s}$?

Some Possible Scenarios (simplifying!):

CDF x_s	$\Delta \Gamma_{B_s}$ too small	Depending on Lattice
Measures	to measure	errorscould be new
in SM		physics
range	$\Delta\Gamma_{B_s}$ measured	Test SM prediction
X_{s} too	$\Delta \Gamma_{B_s}$ too small	Likely to be new
big to	to measure	physics
measure		
	$\Delta \Gamma_{B_s}$ measured	Depending on
		measurement and
		lattice errorscould
		still be new physics

How could we measure $\Delta \Gamma_{B_s}$ at RunII?

- One possible tactic: Two Sample Method.
- Pick a sample where can isolate one CP eigenstate and measure Γ_{CP}

$$- \operatorname{eg using} B_s \to J / \Psi \phi$$

 $-(58\pm12)$ seen in RunI, since easy to trigger on with J/Ψ

• Use with a sample where 50:50 mixture of CP: eg using $B_s \to D_s \pi$ and measure $\Gamma_{CP \, 50:50}$ $\Delta \Gamma = 2 \Big(\Gamma_{CP \, Even} - \Gamma_{CP-50:50} \Big) \qquad ^6$

Isolating a CP component:

- Some samples expected to be pure CP...so no problem.
- But some $(eg B_s \rightarrow J / \Psi \phi)$ are not. (ie P VV)
- Use angular distributions in "Transversity" Basis to separate CP states.
- Run I measurement for CP Odd component in

$$B_s \rightarrow J / \Psi \phi$$
: $\frac{\Gamma_{\perp}}{\overline{\Gamma}_{B_s}} = 0.229 \pm 0.188 \,(stat) \pm 0.038 \,(syst)$

7

RunII Projection from RunI Results

•RunI input:

- $58\pm 12 \quad B_s \to J/\Psi \phi$ events, from which:
- $\tau_{B_s} = 1.34 \text{ ps} (+0.23 0.19) \text{ stat} (\pm 0.05) \text{ syst}$
- $\frac{\Gamma_{\perp}}{\Gamma_{B_s}} = 0.229 \pm 0.188(stat) \pm 0.038(syst)$

Mode	Event Yield	σ_{τ} Projection
$D_s\pi/D_s\pi\pi\pi$	$15300 \rightarrow 23400$	0.015ps
$J/\psi \phi$	6000	0.021ps

Project
$$\sigma_{\frac{\Delta\Gamma_s}{\Gamma_s}} = 0.065$$

(assuming the central value of Run I measurement for , $\Gamma_{\!\scriptscriptstyle \perp}$ the CP odd fraction.)

Using $B_s = J/\psi \phi$

- Expected yield ≈ 6000 events leading to $\sigma(\tau) \approx 0.021 ps$
- Separate CP states using Transversity basis.
- 2 possible methods to separate the distributions:
 - Moments analysis to project out eigenstates separately.
 - Multi-variable Likelihood fit for both simultaneously
- 2 Toy Monte Carlo Studies have been done.
- Detector acceptance correction to Transversity Distribution.
- All of the above only valid in context of SM prediction of no CPV in this mode.

Toy MC study of likelihood method

- Toy MC based on signal and background distributions for $B_s \rightarrow J/\Psi \phi$ observed in RunI. (58±12 projected to 6000 events.)
- Multi-Variable Likelihood analysis used to simultaneously
- fit $\tau_{CP \text{Even}}, \tau_{CP \text{Odd}}$ where $\overline{\tau}_{B_s}$ constrained to world average.
- CP Odd content assumed to be 25%

RunI: $\frac{\Gamma_{\perp}}{\Gamma_{B_s}} = 0.229 \pm 0.188(stat) \pm 0.038(syst)$

Input $\frac{\Delta\Gamma_{B_s}}{\overline{\Gamma}_{B_s}}$	$\frac{\Delta\Gamma_s}{\overline{\Gamma}}$ Significance
0.085	1.35
0.1	1.79
0.125	2.53
0.15	2.69

Toy MC study of Moments Analysis

- Same projection to 6000 $B_s \rightarrow J/\Psi \phi$ events.
- 25% CP-odd component assumed.

• Input
$$\frac{\Delta \Gamma_{B_s}}{\overline{\Gamma}_{B_s}} = 0.15$$

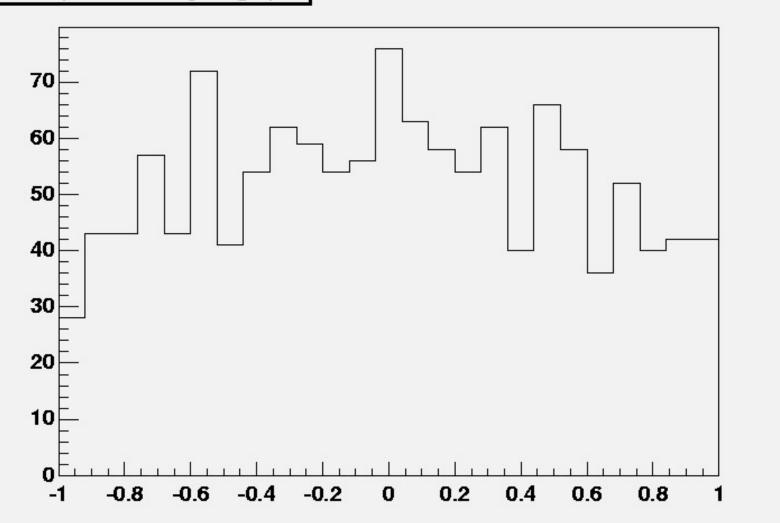
• Measure $\frac{\Delta \Gamma_{B_s}}{\overline{\Gamma}_{B_s}}$ using CP even and odd components as measured in this one sample.

Results

$ \begin{array}{c} c \tau \text{ cut} \\ (\mu m) \end{array} $	Detector sculpting	Background present	$\sigma_{rac{\Delta\Gamma_s}{\Gamma_s}}$
100			0.091
100		✓	0.089
0		\checkmark	0.11
100			0.053

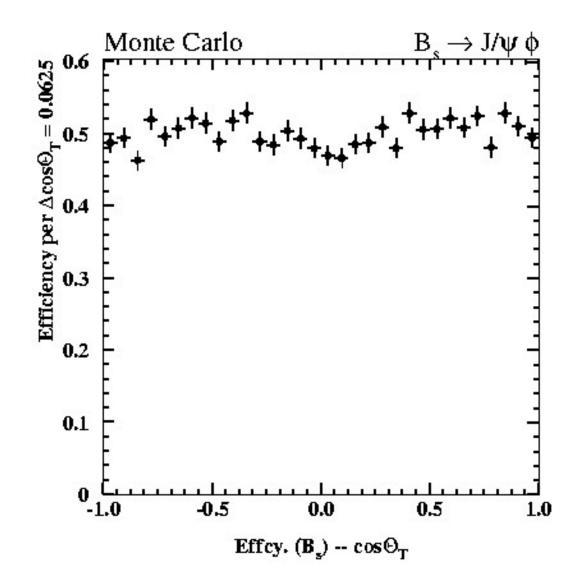
- Need to work hard at improving S/B
- Need to develop a strategy to combine with other lifetime measurements

Cos(Transversity Angle)

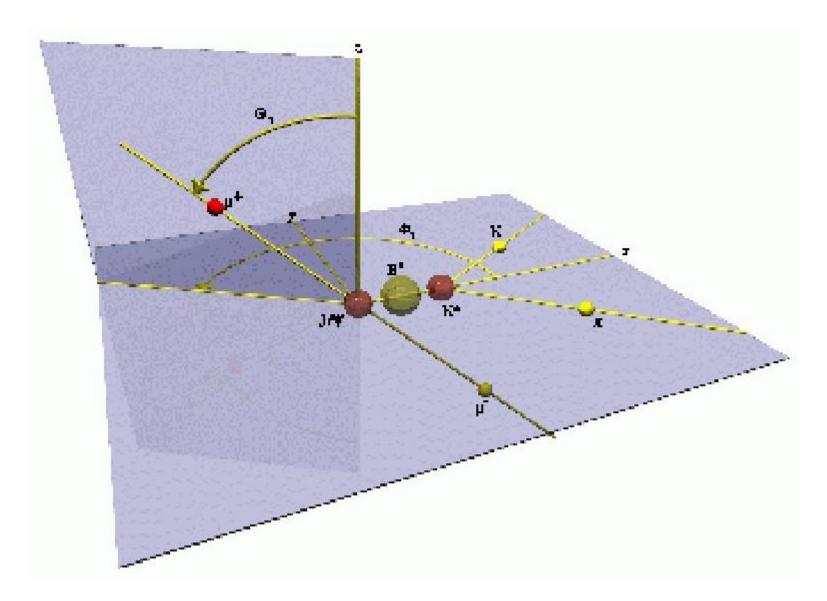


Simulation plot of Transversity to demonstrate the detector acceptance (flat).

Note: These are $B_s \rightarrow J/\Psi \phi$ events, generated using PYTHIA, put through GEANT, and reconstructed in the runII framework using the Universal finders.



RunI detector acceptance for Transversity angle (flat)(Taken from S.Pappas' Thesis on Polarization of Vector-Vector Decays of B-mesons.)



Other issues:

- Mixed CP modes:
 - $-B_{s} \rightarrow D_{s}\pi, D_{s}\pi\pi\pi$
 - Comes in on hadronic trigger which might influence the CP content.
- other CP modes:
 - $B_{s} \rightarrow K^{+}K^{-}$
 - Overlap issues, see F.Würthwein's talk in WKG1
 - $-B_{s} \rightarrow D_{s}^{+}D_{s}^{-}$
 - Small sample using $\phi \pi$ mode, so seek to use others.

 - $B_s \rightarrow D_s^{*+} D_s^{*-}$ Larger sample, but angular separation needed, and final state photon smears out kinematics.

$$\begin{array}{ccc} - & B_s \rightarrow J / \psi K^0{}_s, B_s \rightarrow \pi^+ \pi^-, B_s \rightarrow \overline{D}{}^0 K^0 \\ \bullet & \text{Very small expected sample sizes.} \end{array}$$

Conclusion

• Run II prediction based on Run I results:

 $58\pm 12 \quad B_s \to J/\Psi\phi$

 $\frac{\Gamma_{\perp}}{\Gamma_{R}} = 0.229 \pm 0.188(stat) \pm 0.038(syst)$

lead to: **Project** $\sigma_{\frac{\Delta\Gamma_s}{\Gamma_s}} = 0.065$

- Have studied several ways to do the analysis
- Investigating more samples which could prove useful
- In the process of detailed MC work

Comparison of MC's

- For $\frac{\Delta\Gamma_{B_s}}{\overline{\Gamma}_{B_s}} = 0.15$
 - likelihood MC: $\sigma_{\frac{\Delta \Gamma_s}{\Gamma_s}} = 0.056$
 - Moments MC:

$c \tau \operatorname{cut}(\mu m)$	Detector sculpting	Background present	$\sigma_{rac{\Delta\Gamma_{s}}{\Gamma_{s}}}$
100	\checkmark	\checkmark	0.091
100		\checkmark	0.089
0		\checkmark	0.11
100			0.053

- To compare RunII projection with Moments MC, consider the effect of $\sigma_{\tau_{CPEven}} \circ \sigma_{\Delta\Gamma_{s}} = 1$
 - RunII Projection: 0.056
 - Moments MC: 0.09