

Bottom Quark Production at DØ

Kevin P. Davis University of Arizona DÆ Collaboration

I. Open Bottom Production at 1.8 TeV II. Run II B Production Prospects

bb Correlations at 1.8 TeV

Title: USR\$ROOT2:[FEIN.PRL]ET2_BIG7.EPS;1 Creator: HIGZ Version 1.20/11 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

NLO processes improve theoretical prediction of bottom quark production

- Central value of QCD calculation generated with MNR
- Theoretical uncertainty obtained by varying
 - $4.5 \text{ GeV/c}^2 < m_b^2 < 5.0 \text{ GeV/c}^2$

•
$$\mu_o / 2 < \mu < 2\mu_o$$
 $\mu_o \equiv \sqrt{(m_b)^2 + (p_T^b)^2}$

Title: USR\$ROOT2:[FEIN.DATA]ET3_BIG11.EPS;1 Creator: HIGZ Version 1.20/11 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

 $|y_{b}| < 1.0$

Muon cross section coming from b quarks is a factor of about 4 above NLO predictions for forward muons.

b-quark Cross Section at 630 GeV

Preliminary only - UA1 and D0 points on this plot are under review.

With dedicated B-factories like Belle and Babar, why do B physics at the Tevatron?

Test and probe pQCD

Plenty of b-quark pairs produced

Above production threshold for all B species

Unitarity triangle reach

B_s mixing

• Continue Run I program
– QCD tests
- spectroscopy and lifetimes I_b, B_c
• $ V_{td} / V_{ts} $
$-B_S$ mixing $B_s \otimes K^*g$
– radiative decays
• CP violation and CKM angles
$-\sin(2\mathbf{b})$ B B $J/\mathbf{y} + K_s$
$-\sin(2a)$ B P ⁺ p ⁻
- possibly g $B_s \otimes D_s^{\pm} K^{\mp}$
• non SM CP violation
$- B_s \otimes J/y + f$
• Rare decays
– B® mini, B® mini X _s

- $L_{inst} = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- $\sigma_{inel} \sim 50 \text{ mb}$
- $\sigma_{bb} / \sigma_{inel} \sim 10^{-3} (100 \ \mu b)$
 - -10^{11} bb pairs produced per year
 - All species produced $(B^0, B^+, B_S, B_C, b$ -baryons)

- Trigger on leptons and displaced tracks

- Harsh environment
 - Large occupancies
 - Multiple interactions

 $BR(B \rightarrow l^+ \boldsymbol{n}_l) = 10\%$

 $\Rightarrow 10^{10} \ b \rightarrow l \text{ decays per year}$ $\Rightarrow 10^{9} \ b \overline{b} \rightarrow ll \text{ decays per year}$

In Run I - 35 K muon in jet events for a luminosity of 5 pb⁻¹ from 100 pb⁻¹ of data

In Run II - 5 fb⁻¹ per year at $2x10^{32}$

Statistically less limited

Improves cross section reach, but just how far remains to be seen.

Estimated to be 250 GeV in B-jet E_T and 100 GeV in P_T^{min}

B fraction

DØ - 10% using P_t^{rel} fits

Improved stats, better fits

Momentum Resolutions (central B field) -

Run I - 20%

Run II - 4%

Jet Energy Scale - One of the largest systematic uncertainties (30% in the LNR),

Resolution improves

... but how much needs to be studied (don't forget - we're kids with a new toy)

Increased luminosity introduces the following fun "challenges"

Multiple interactions become more of a problem - systematic effects?

Lepton trigger rate high (need sim.) -

Increased efficiency and coverage

B physics competes with other (worthwhile) physics topics for data samples - both imply prescales

Crossing angle for 132 ns bunch spacing

Displaced vertex trigger (right away?)

Hopeful Error Estimates

Errors here:

Removed statistical error b-fraction - 10% Unsmearing - 20% to 4%

DØ has measured b-production at 630 and 1800 GeV

We'll do it all again at 2 TeV, and more

Systematic effects (lum, trigger, resolutions, JES) need to be studied (duh)

Also, the systematic effects of simply having more statistics (fit results, physics reach, etc.) need to be investigated.

