CP Violation Measurements at DØ in Run II

Rick Jesik Indiana University

Workshop on

B Physics at the Tevatron Run II and Beyond

September 23rd 1999

DØ Run II B Physics Goals and Aspirations

QCD tests

- cross sections
- correlations
- charmonium polarization

CP violation and CKM angles

- $\sin(2\beta)$ **B** \rightarrow **J** / ψ + **K**_s
- $\sin(2\alpha)$ $\boldsymbol{B} \to \pi^+\pi^-$
- possibly $\gamma \quad B_s \to D_s^{\pm} K^{\mp}$

Non SM CP violation

• $B_s \rightarrow J/\psi + \varphi$

B_S mixing

- $B_s \rightarrow D_s + n\pi$
- $B_s \rightarrow J/\psi + K^*$

Spectroscopy and lifetimes

• $B^0, B^+, B_s, B_c, \Lambda_b$

Rare and radiative decays

- $B \rightarrow l^+ l^- B \rightarrow l^+ l^- X_s$
- $B_s \to K^* \gamma$

The DØ Upgrade

The DØ Upgrade

Built on previous strengths:

- excellent calorimetry
- good muon coverage and purity

Significantly improved tracking and triggering capabilities:

- new inner tracker with silicon vertex detector and scintillating fiber tracker
- 2 Tesla magnetic field
- enhanced muon triggering
- pre-shower detectors for electron ID and triggers
- level II impact parameter trigger

The DØ Inner Tracking System

DØ Upgraded Detector Performance

- Good Momentum resolution:
 - $dp_T/p_T^2 = 0.002$ (Silicon+Fiber tracker)
- High tracking efficiency:
 - at least 95 % $|\eta| < 3$ (disks)
- Vertex Reconstruction:
 - primary vertex: $\sigma^{\text{vertex}} = 15-30 \,\mu\text{m} \,(\text{r-}\phi)$
 - secondary vertex: $\sigma^{vertex} = 40 \ \mu m \ (r-\phi)$, 100 $\mu m \ (r-z)$
- Excellent lepton coverage, trigger and ID efficiency:
 - muons: $p_T > 1.5$ GeV, $|\eta| < 2$
 - electrons: $p_T > 1$ GeV, $|\eta| < 2.5$
- Impact parameter trigger

B Physics in the 21st Century

Experiments will confront the Standard Model interpretation of CP violation

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- A and λ have been measured to a few percent
- unitarity condition:

 $V_{tb}^{*}V_{td} + V_{cb}^{*}V_{cd} + V_{ub}^{*}V_{ud} = 0$

$Sin(2\beta)$ via $B \rightarrow J/\psi K_S$

$B \rightarrow J/\psi K_S$ Trigger

- Trigger on low p_T leptons from J/ψ decay
- Bandwidth limitations:
 - 10 KHz at level 1, 1 KHz at level 2
- Use silicon vertex trigger (SVT) at level 2

More than 80% of the high p_T tracks in these events have significant impact parameters

Muon Triggers

Single muon + SVT

Trigger	Level 2 backg. (Hz)	$B \rightarrow J/\psi K_S$ efficiency (%)	1 0.8	
Single µ:			- a.0 Rate	
$p_{\rm T} > 6$	13.5	10.8	Background	
$p_{\rm T} > 4$	38.6	23.9	0.2	
$p_{\rm T} > 4$ + SVT	13.2	17.3	o _	
Dimuon:			10	
$P_{\rm T} > 2, 4$	1.1	8.8	10 tes (Hz)	
$P_{T} > 2, 2$	272	20.1	kground Rai	
$p_T > 2, 2$ + SVT	7.6	14.9	1 QCD Bacl	
			10	
max level 2 rate for all DØ triggers is 100 Hz				

Electron Triggers

0

2.5

5 7.5

10

12.5

15

20

 $M(e^{-},e^{+}) (GeV/c^{2})$

22.5 25

Two electrons each with $p_T > 2 \text{ GeV/c}$

- relies on pre shower CAL match to reduce background
- also cut on opposite sign, ΔR , and invariant mass at level 2
- level 2 rate < 300 Hz

$B \rightarrow J/\psi K_S$ Reconstruction

$$J/\psi
ightarrow \mu^+\mu^-$$

- two muon tracks
 - $p_T > 1.5 \text{ GeV/c}$
 - $\bullet \mid \eta \mid < 2$

$B \rightarrow J/\psi K_S$ Reconstruction

$B \rightarrow J/\psi K_s$ decay length reconstruction

- Two secondary two-track vertices
- Average *B* decay length: 23 mm
- Vertex resolution: 100 μm

$B \rightarrow J/\psi K_S$ Reconstruction

- $J/\psi \rightarrow \mu^+\mu^-$ require two central tracks with $p_T > 1.5 \text{ GeV/c}$
- $K_S \rightarrow \pi^+ \pi^-$ use long lifetime to reject background: $L_{xy}/\sigma > 5$
- Perform 4-track fit assuming $B \rightarrow J/\psi + K_S$
 - constrain $\pi \pi$ and $\mu \mu$ to mass of K_s and J/ψ respectively
 - force K_S to point to *B* vertex and *B* to point to primary

Flavor Tagging

Opposite side tags:

- identify the flavor of the other *B* in the event
 - soft lepton tags $b \rightarrow l^- + X$
 - jet charge tags $Q_{jet} < 0$ for b

Efficiency (\mathcal{E}) and dilution factor (D) D = 2 P - 1P is the correct tag probability $\mathcal{E} D^2$ is the tag's effectiveness

Same side tags:

• correlation of flavor and charge of closest particle produced in fragmentation or decay

Flavor Tagging

Tag	εD^2 (%) measured CDF Run I	εD^{2} (%) expected CDF Run II	Relevant CDF upgrade	DØ capabilities
Same side	$1.8\pm0.4\pm0.3$	2.0	tracking	~ same
Soft lepton	$0.9\pm0.1\pm0.1$	1.7	μ coverage	~ 1.5 x better
Jet charge	$0.8 \pm 0.1 \pm 0.1$	3.0	silicon tracking	~ same
Opp. side <i>K</i>		2.4	ToF	None
Combined		9.1		~ 7.5

Calibrate tags in Run II with:

- 40 K $B^{\pm} \rightarrow J/\psi + K^{\pm}$ events
- 20 K $B^0 \rightarrow J/\psi + K^{0*}$ events

Statistical error will be bigger than systematic

Sin2 B Expectations for 2fb⁻¹

For a time independent analysis:

$$\sigma(\sin 2\beta) \approx \frac{1+x_d^2}{x_d} \frac{1}{\sqrt{N \varepsilon D^2}} \sqrt{1+\frac{B}{S}}$$

mode	$J/\psi \rightarrow \mu^+ \mu^-$	$J/\psi \rightarrow e^+e^-$	
trigger eff. (%)	32	25	
reco'd events	8,500	6,500	
$\sigma(\sin 2\beta)$	0.13	0.15	
$O(\sin 2\rho)$	0.10		

• (S/B ~ 0.75)

• $\varepsilon D^2 \sim 7 \%$

But, since most of the background is at small *t*'s, a time dependent analysis gives reduced error: $\sigma(\sin 2\beta) \sim 0.07$

And this is just in the first two years - 2 fb⁻¹. We won't stop there.....

New Director - New Run II Plan

- No long shutdowns
- Gradual luminosity improvements as we run
- Run until LHC results tell us to stop
- 5 fb⁻¹ per year at peak

$L (\mathrm{fb}^{-1})$	Number of $B \rightarrow J/\psi K_S$	$\sigma(\sin 2\beta)$
2	15 K	0.07
5	38 K	0.04
10	75 K	0.03
20	150 K	0.02

Sin(2 β) Measurement

Goals for this workshop:

- work on reconstruction algorithms
- determine tagging efficiencies and dilution factors
 - does neural net tagging help ?
- can a (combined) Tevatron measurement scoop Babar/Belle ?

What About Those Other Angles?

DØ has done no formal studies yet

- Forget about penguins, they are the least of our problems:
 - no π/K particle ID should we just give up then ???
 - not enough bandwidth for level one all hadronic trigger
- But, we can try:
 - trigger on opposite side lepton
 - "smart" pre-scaled triggers remove multiple interaction events
 - other new trigger ideas use high p_T hadron tracks and/or jets to help lower lepton p_T thresholds
 - π^{0} 's might be possible for us