Doubly Heavy Baryons

Chris Quigg

Theoretical Physics Department

Fermi National Accelerator Laboratory

quigg@fnal.gov

- Why are heavy-heavy baryons interesting?
- $QQ^{(\prime)}q$ spectroscopy
- Weak Decays of $QQ^{(\prime)}q$ states
- Strong and electromagnetic cascades
- Production dynamics
- Work to be done

(Substituting for Anatoly Likhoded)

Why are $QQ^{(\prime)}q$ baryons interesting?

Spectroscopy

- \triangleright Analogy between $(QQ^{(\prime)})_{3^*}q$ and $\bar{Q}q$ as heavy-light systems
- \triangleright For single gluon exchange, $V_{(QQ^{(\prime)})_{\mathbf{3}^*}}(r) = \frac{1}{2}V_{(Q\bar{q})_{\mathbf{1}}}(r)$; deviations beyond?
- \triangleright Learn about $(QQ^{(\prime)})_{3^*}$ dynamics through excitation spectrum?
- \triangleright As in $b\bar{c}$, unequal masses in bcq may expose limitations of NRQM

Weak decays

- \triangleright Rich set of heavy \rightarrow heavy and heavy \rightarrow light transitions
- \triangleright Isolate different pieces of $\mathcal{H}_{\mathrm{weak}}^{\mathrm{eff}}$

• Strong and electromagnetic cascades

- ightharpoonup Two-scale problem: $r_H = \langle r_{QQ}^2(\prime) \rangle^{1/2}$ and $r_\ell = \langle r_{(QQ}^2(\prime))_q \rangle^{1/2}$
- \triangleright Expect some extremely narrow states

• Production dynamics

- > Extend ideas about fragmentation models to new regimes
- Compare with quarkonium production dynamics

$QQ^{(\prime)}q$ spectroscopy

 \bullet SU(3) classification of baryon states: the multiplets

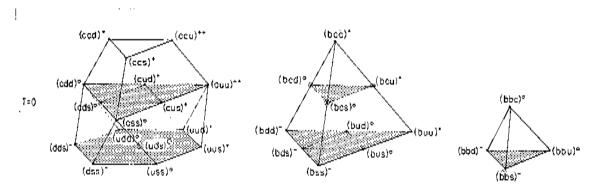


Fig. 28. $J^P = 1/2$ baryon states in flavor SU(6). The circled states occur twice, as do those that lie in both [6] and [3*] of SU(3) _{uds}. There are 70 states in all.

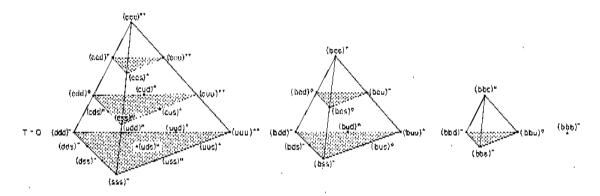


Fig. 29. $J^P = 3/2^+$ baryon states in flavor SU(6). There are 56 states in all.

$QQ^{(\prime)}q$ spectroscopy ...

- NRQM (potential-model) calculations of ground-state masses
 - ▷ The pioneers: S. Fleck and J.-M. Richard, Prog. Theoret. Phys. 82, 760 (1989); J.-M. Richard, "Hadrons with Two Heavy Quarks," CHARM2000 Workshop at Fermilab (1994). [Born-Oppenheimer]
 - S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, A. I. Onishchenko, Heavy Ion Phys. 9:133-144, 1999 hep-ph/9811212. [Quark-diquark]
 - M. L. Stong, "Spectra of Baryons Containing Two Heavy Quarks," hep-ph/9505217.

Diquark is larger than corresponding quarkonium state: In a potential $V(r) = \lambda r^{\nu}$, lengths scale as

$$L \propto (\mu|\lambda|)^{-1/(2+\nu)}$$

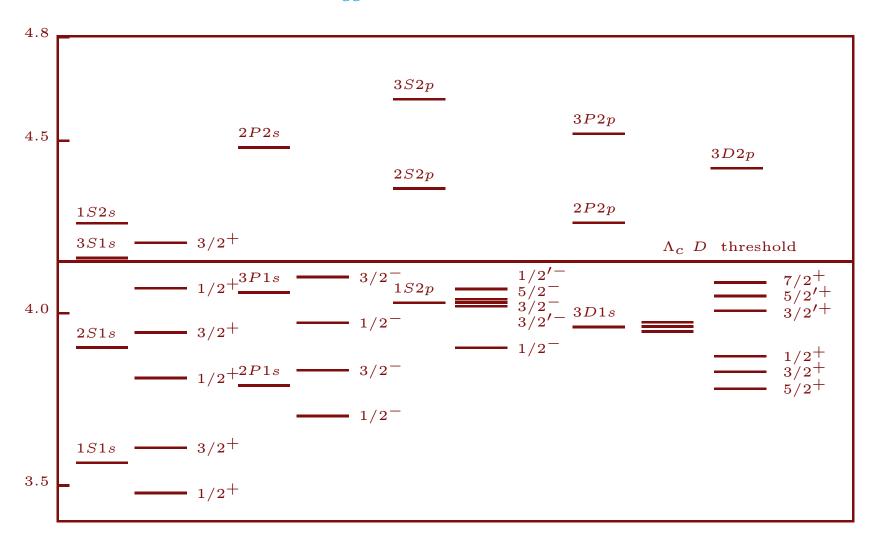
- QCD sum rule estimates of ground-state masses
 - ▷ V. V. Kiselev and A. I. Onishchenko, "Doubly heavy baryons in sum rules of NRQCD," hep-ph/9909337.

Masses of the ccq baryons

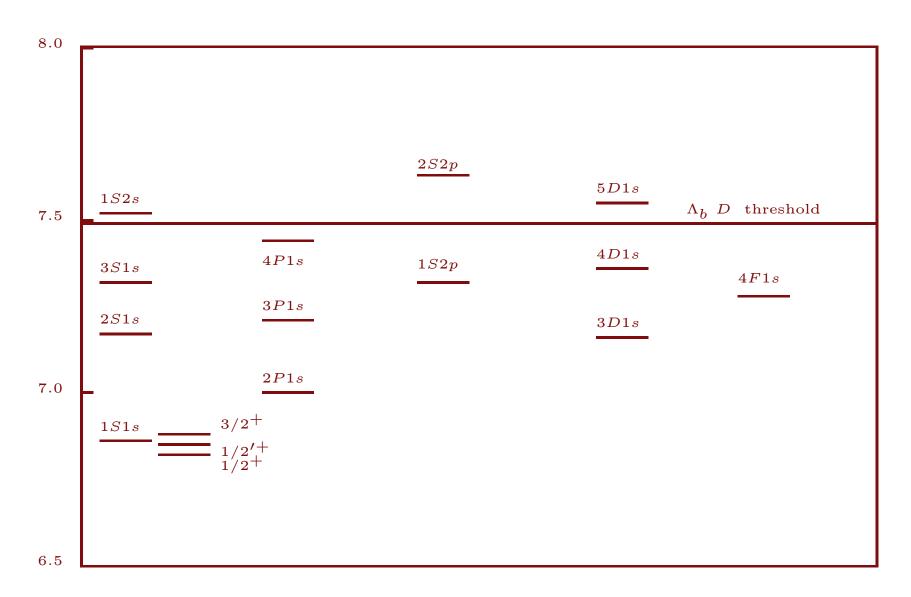
		${\rm Mass} \ [{\rm GeV}/\!c^2]$		
Quark Content	Baryon	Fleck & Richard	Gershtein, et al.	NRQCD Sum Rules
(ccq)	Ξ_{cc}	3.613	3.478	3.47 ± 0.05
(ccq)	Ξ_{cc}^*	3.741		
(ccs)	Ω_{cc}	3.703		
(ccs)	Ω_{cc}^*	3.835		

Masses of the bcq baryons

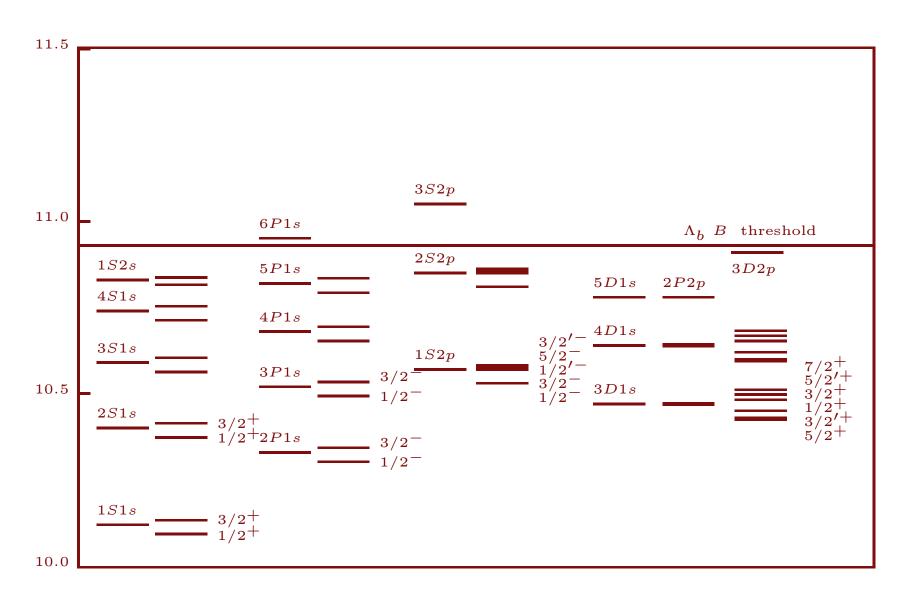
		${\rm Mass} \ [{\rm GeV}/\!c^2]$		
Quark Content	Baryon	Fleck & Richard	Gershtein, et al.	NRQCD Sum Rules
(bcq)	Ξ_{bc}	6.876	6.82	6.80 ± 0.05
(bcq)	Ξ_{bc}	6.932		
(bcq)	Ξ_{bc}^*	6.985		
(bcs)	Ω_{bc}	6.951		
(bcs)	Ω_{bc}	7.007		
(bcs)	Ω_{bc}^*	7.065		


Masses of the bbq baryons

		${\rm Mass} \ [{\rm GeV}/\!c^2]$		
Quark Content	Baryon	Fleck & Richard	Gershtein, et al.	NRQCD Sum Rules
(bbq)	Ξ_{bb}	10.129	10.093	10.07 ± 0.09
(bbq)	Ξ_{bb}^*	10.188		
(bbs)	Ω_{bb}	10.186		
(bbs)	Ω_{bb}^*	10.255		


$QQ^{(\prime)}q$ spectroscopy ...

- Exploration of excited states; relation to $\bar{Q}q$ spectrum
 - ightharpoonup In the limit $m_Q, m_{Q'} \to \infty$, the $QQ^{(\prime)}q$ spectrum will be analogous to that of $\bar{Q}q$.
 - ightharpoonup For large but finite values of $m_Q, m_{Q'}$, the $2J_H + 1$ degeneracy of the spin- J_H diquark enriches the $QQ^{(\prime)}q$ spectrum.
 - ightharpoonup The characteristic scales of light-quark and heavy-quark excitations are different: $V_{(QQ^{(\prime)})_{\mathbf{3}^*}}(r) = \frac{1}{2}V_{(Q\bar{q})_{\mathbf{1}}}(r)$.


$\Xi_{cc}^{+,++}$ Spectrum

$\Xi_{bc}^{0,+}$ Spectrum

$\Xi_{bb}^{-,0}$ Spectrum

Weak decays ...

- For doubly charmed states, Savage and Springer give an extensive catalogue of two-body decay modes and SU(3) decomposition.
- A similar catalogue is needed for *bcq* and *bbq* states, to identify possible discovery modes and to understand what could be learned.
- Lifetime estimates: Serpukhov group argues that Cabibbo-allowed W-exchange shortens Ξ_{cc}^+ lifetime. They predict . . .

$$\tau(\Xi_{cc}^{++}) = 0.43 \pm 0.11 \text{ ps}$$
 $\tau(\Xi_{cc}^{+}) = 0.11 \pm 0.03 \text{ ps}$
 $\tau(\Xi_{bc}^{+}) = 0.33 \pm 0.08 \text{ ps}$
 $\tau(\Xi_{bc}^{0}) = 0.28 \pm 0.07 \text{ ps}$

• Also worth looking at ccs, ccc, bcs, bcc, bbs, bbc, bbb.

Cascades to the ground states

- Analyze cascade down the light-quark levels using heavy-quark symmetry, as for $\bar{Q}q$ mesons.
- Analyze cascades down diquark levels using the multipole formalism applied to quarkonium transitions.
- Some excited states may be extremely narrow:
 - \triangleright 2P1s \rightarrow 1S1s transition requires a sudden change of both L_H and S_H .
 - \triangleright Higher excitations, like 3D1s $J^P = 7/2^+, 5/2^+$ states, decay only through high (E2, etc.) multipoles.
 - ➤ To what degree does configuration mixing broaden these states?

Production of $QQ^{(\prime)}q$ States

- Fragmentation models, à la quarkonium production.
- Full $\mathcal{O}(\alpha_s^4)$ evaluation of

$$gg o (QQ^{(\prime)})_{\mathbf{3}^*} + \text{anything}$$

 $q\bar{q} o (QQ^{(\prime)})_{\mathbf{3}^*} + \text{anything}$

- Cross section $\propto |R_{(QQ^{(\prime)})_{3^*}}(0)|^2$.
- Estimates from Serpukhov group (for $p_{\perp} > 5$ GeV/c and |y| < 1):

$$\sigma(\Xi_{cc}) \approx 0.13 \text{ nb} \quad [M(\Xi_{cc}) \approx 3.5 \text{ GeV/}c^2]$$

 $\sigma(\Xi_{bc}) \approx 1 \text{ nb} \quad [M(\Xi_{bc}) \approx 6.8 \text{ GeV/}c^2]$

A surprising result! Larger cross section for Ξ_{bc} attributed to

- \triangleright Smaller size of $(bc)_{3^*}$, compared to $(cc)_{3^*}$
- ▷ Combinatorial factors

Work to be done ...

- Critically examine the ground-state mass estimates.
- Look for ways to encounter non-potential-model dynamics in the excitations of the $(QQ^{(\prime)})_{3^*}$ system.
- Catalogue the two-body (discovery?) modes of $\Xi_{cc}^{+,++}$, $\Xi_{bc}^{0,+}$, and $\Xi_{bb}^{-,0}$.
- Estimate the lifetimes of $\Xi_{cc}^{+,++}$, $\Xi_{bc}^{0,+}$, and $\Xi_{bb}^{-,0}$.
- Identify possible quasistable excited states.
- Analyze the cascade decays of excited states, taking into account the different sizes of the heavy diquark and the quark-diquark system.
- Consider mechanisms for the production of doubly (or triply!) heavy baryons and relate them to mechanisms for quarkonium production.
- Are the $\Xi_{cc}^{+,++}$ states significantly produced in the weak decays of $\Xi_{bc}^{0,+}$?

•

A brief bibliography

- SPECTROSCOPY OF DOUBLY HEAVY BARYONS. By S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko. Heavy Ion Phys. 9:133-144, 1999 hep-ph/9811212.
- DOUBLY CHARMED BARYON PRODUCTION IN HADRONIC EXPERIMENTS. By V.V. Kiselev, A.K. Likhoded. Prepared for 7th International Conference on Hadron Spectroscopy (Hadron 97), Upton, NY, 25-30 Aug 1997. In *Upton 1997, Hadron spectroscopy* 561-565.
- LIFETIMES OF Ξ_{bc}^+ AND Ξ_{bc}^0 BARYONS. By V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko. hep-ph/9901224.
- DOUBLY HEAVY BARYONS IN SUM RULES OF NRQCD. By V. V. Kiselev and A. I. Onishchenko. hep-ph/9909337.
- LIFETIMES OF DOUBLY CHARMED BARYONS: Ξ_{cc}^+ AND Ξ_{cc}^{++} . By V. V. Kiselev, A. K. Likhoded, A. I. Onishchenko. Phys. Rev. D60:014007, 1999 hep-ph/9807354.
- SPECTROSCOPY OF DOUBLY CHARMED BARYONS: Ξ_{cc}^+ AND Ξ_{cc}^{++} . By S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, A. I. Onishchenko. Mod. Phys. Lett. A14:135-146, 1999 hep-ph/9807375.
- DOUBLY CHARMED BARYON PRODUCTION IN HADRONIC EXPERIMENTS. By A. V. Berezhnoi, V. V. Kiselev, A. K. Likhoded, A. I. Onishchenko. Phys. Rev. D57:4385-4392, 1998 hep-ph/9710339.
- S. Fleck and J.-M. Richard, Prog. Theoret. Phys. 82, 760 (1989).

- J.-M. Richard, "Hadrons with Two Heavy Quarks," in *The Future of High-Sensitivity Charm Experiments:* Proceedings of the CHARM2000 Workshop at Fermilab, FERMILAB-CONF-94/190, p. 95.
- M. L. Stong, "Spectra of Baryons Containing Two Heavy Quarks," hep-ph/9505217.
- M. J. Savage and M. B. Wise, Phys. Lett B248, 177 (1990).
- M. J. Savage and R. Springer, "Very Charming Baryons," Int. J. Mod. Phys. A6, 1701 (1991).
- M. A. Doncheski, J. Steegborn, and M. L. Stong, "Fragmentation Production of Doubly Heavy Baryons," *Phys. Rev.* D53, 1247 (1996).
- E. J. Eichten, Contribution to Heavy Quark 98, available at http://www.fnal.gov/projects/hq98/talks/estia/.