

Tomasz Skwarnicki1FNAL B-workshopSept.23,99

BTeV experiment for CP violating measurements

- Philosophy of BTeV design
- Concentrate on those experimental aspects of BTeV which make it unique

Tomasz Skwarnicki 2 FNAL B-workshop Sept.23,99

C0 Interaction Region

Construction of new experimental hall is completed !

Opens a possibility of **dedicated** b experiment at Tevatron

Beyond Run II experiment (≥ 2005)

• Want as broad exploration of b-physics as possible:

- detached vertex trigger at the lowest level to be able to study multi-hadron final states
- tracking system with excellent efficiency, vertex, mass and decay time resolutions
- lepton identification and triggering
- best EM calorimeter for γ/π^0 detection
- best particle identification for $\pi/K/p$ separation
- c-physics as a secondary goal

 $\alpha + \beta + \gamma = \pi$

Tomasz Skwarnicki5FNAL B-workshopSept.23,99

CP-approach to CKM matrix

• Need a lot of different measurements to determine all independent angles with their signs

Physics	Decay Mode	Vertex	K/π	γ det	Decay
Quantity		Trigger	sep		time σ
$sin(2\alpha)$	$B^{\circ} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$	\checkmark	\checkmark	\checkmark	
$\sin(2\alpha)$	$B^{o} \rightarrow \pi^{+}\pi^{-} \& B_{s} \rightarrow K^{+}K^{-}$	\checkmark	\checkmark		\checkmark
$\cos(2\alpha)$	$B^{\circ} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$	\checkmark	\checkmark	\checkmark	
$sign(sin(2\alpha))$	$B^{\circ} \rightarrow \rho \pi \& B^{\circ} \rightarrow \pi^{+} \pi^{-}$	\checkmark	\checkmark	\checkmark	
$sin(\gamma)$	$B_s \rightarrow D_s K^-$	\checkmark	\checkmark		\checkmark
$sin(\gamma)$	$B^{\circ} \rightarrow D^{\circ} K^{-}$	\checkmark	\checkmark		
sin(γ)	$B \rightarrow K \pi$	\checkmark	\checkmark	\checkmark	
$\sin(2\chi)$	$B_s \rightarrow J/\psi$ η', J/ψη			\checkmark	\checkmark
$sin(2\beta)$	$B^{o} \rightarrow J/\psi K_{s}$				
$\cos(2\beta)$	$B^{o} \rightarrow J/\psi K^{*} \& B_{s} \rightarrow J/\psi \phi$				
X _s	$B_s \rightarrow D_s \pi^-$	\checkmark	\checkmark		\checkmark
$\Delta\Gamma$ for B _s	$B_s \rightarrow J/\psi \eta', K^+K^-, D_s \pi^-$	\checkmark	\checkmark	\checkmark	✓

• BTeV experiment designed to carry out this program in full !

- b production peaks at large angles with large bb correlation
- Limited solid angle \mapsto Limited cost

- the higher radiation dose
- more particles to deal with

- Each of two arms:
 - tracking stations (silicon strips + straws)
 - hadron identification by RICH
 - γ/π^0 detection and e identification in lead-tungsten crystal calorimeter
 - μ triggering and identification in muon system with toroidal magnetic field
- Designed for luminosity 2 x 10³² cm⁻²s⁻¹ (2 x 10¹¹ bb events per 10⁷ s)

Tomasz Skwarnicki9FNAL B-workshopSept.23,99

Pixel detector

- inside the beam pipe
- inside magnetic field:
 - stand-alone P measurement possible (rejection of scattered low momentum tracks in the vertex trigger)

• Advantages over silicon strips

- quasi 3D (5-10 μ m resolution in narrow direction)
- low occupancy $\leq 10^{-4}$
- low noise
- very fast
- radiation hard
- Essential for robust detached vertex trigger in the first trigger level
- Good vertex and decay time resolution in analysis

- Triplets used to get space point & mini-vector, called a 'station hit'
- Station hits are organized into ϕ -slices
- Tracks are found in these ϕ -slices
 - full pattern recognition is performed
 - Minimum track p cuts are applied
- Event level processors then find primary vertices & detached tracks (can handle multiple interactions per crossing, 2 on average)

FNAL B-workshop Sept.23,99

Overall Trigger System

Trigger Level	Input event rate kHz	Algorithm	Latency ms	Data reduction
1	7,600	Vertex or μ , e	0.05-1	100
2	70-100	Refined vertex, partial reconstruction	20	5-10
3	15-20	Full event reconstruction	200	5-10
Data logging	2-4			

• The only experiment with detached vertex trigger in the lowest level

- LHC-b and CDF have vertex triggers in the second level

- hadron Pt threshold as low as 0.5 GeV → good trigger efficiency for all kind of hadronic modes (the most open trigger)
 - LHC-b requires a high Pt hadron (>2.4 GeV)
 - CDF requires two high Pt hadrons (>2.2 GeV each)
- Data logging at rate 10-100 higher than in the other experiments
 - input rate from b's into detector is ~1 kHz !

Tomasz Skwarnicki 12 FNAL B-workshop Sept.23,99

Electromagnetic calorimeter

- Without modes with neutrals exploration of CP violation is incomplete $(B \rightarrow \rho \pi !)$
- Use ~40,000 lead-tungsten crystals (PbWO₄)
 - technology developed for LHC by CMS
 - radiation hard
 - fast scintillation (99% of light in <100 ns)
 - will use phototubes since outside the magnetic field
- Excellent energy and angular resolution: BTeV LHC-b

(Pb-scintillating fiber sampling calorimeter with preshower detector)

Energy resolution

$$\sigma_{\rm E} = \sqrt{\frac{(1.6\%)^2}{\rm E} + (0.55\%)^2} \qquad \sigma_{\rm E} = \sqrt{\frac{(10\%)^2}{\rm E} + (1.5\%)^2}$$

Segmentation
(2.25 cm)² at 7m
(6 - 24 cm)² at 13m

Tomasz Skwarnicki 16

FNAL B-workshop Sept.23,99

$\pi/K/p$ identification

- Missing component in high Pt experiments
- Expensive to deploy in central geometry
 - CDF's ToF helps tagging only (momentum coverage anti-correlated with the $\pi^+\pi^-$ trigger); only 1-1.5 σ K/ π separation from dE/dX
- Sufficient K/ π separation can be achieved in BTeV with a single gaseous RICH (C₄F₁₀)
 - LHCb needs two because of higher momenta
 - similar to HERA-B, and first LHCb RICH detectors
- Provide K/p separation at low momenta with aerogel radiator (helps kaon tagging)

Tomasz Skwarnicki17FNAL B-workshopSept.23,99

A sample calculation for $B^0 \rightarrow \pi^+ \pi^-$

	BTeV	LHCb	e+e-
σ(bb) µm	100	500	0.001
Luminosity cm ⁻² s ⁻¹	2×10^{32}	2×10^{32}	3×10^{33}
$BR(B^0 \rightarrow \pi^+ \pi^-)$	0.04	0.47 x 10 ⁻⁵	
Reconstruction efficiency	0.06	0.032	0.4
Trigger efficiency (after all cuts)	0.50	0.17	1.0
Number of $B^0 \rightarrow \pi^+ \pi^-$ events in $10^7 s$	21,100	15,700	73
Tagging efficiency ϵD^2	0.1	0.1	0.3
Number of tagged events	2,100	1,570	22
Background/signal	1.7	1	2
Error in $\pi^+\pi^-$ asymmtery	±0.027	±0.023	±0.370
			-

Tomasz Skwarnicki19FNAL B-workshopSept.23,99

Conclusions

- Tevatron is in unique position to thoroughly explore CP violation in b system
 - dedicated b detector is needed for a complete exploration (cannot do without PID and soft π^0 detection)
 - BTeV competitive with LHCb in all measurements with all charged track final states
 - BTeV much better than LHCb in modes with neutrals
 - With its inclusive trigger BTeV can explore the decays we have not thought of (new physics ?)