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Using machine learning to unlock 
Gaia’s full potential to determine the 

dark matter halo

First Gaia skymap in color [https://www.cosmos.esa.int/web/gaia/gaiadr2_gaiaskyincolour]

with Timothy Cohen, Marat Freytsis, Phillip Hopkins, Mariangela Lisanti, 
Lina Necib, and Andrew Wetzel

https://www.cosmos.esa.int/web/gaia/gaiadr2_gaiaskyincolou
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Introduction
Goal: Use data from the Gaia satellite 
to make measurements about the halo 
of the Milky Way 

Why (Astronomers): How galaxies form 

Why (Particle physicists): Dark matter 
makes up the halo

How: Old stars act as tracers for 
dark matter 

Challenges: Identifying old stars 
with limited information



Bryan Ostdiek (University of Oregon)  3

http://www.physics.csbsju.edu/stats/WAPP2_cow.html

Spherical cow model of a galaxy
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Side view Top view

Toy model of spiral galaxy
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Toy model of spiral galaxy

⇠ 15 kpc

RHalo ⇠ 100kpc

MHalo ⇠ 1012M�
M(r) / r

hvi ⇠
r

GMHalo

RHalo

⇠ 200 km/s

Mstellar ⇠ 5⇥ 1010 M�

Flat rotation curve implies

⇢(r) / 1

r2

Assuming spherical 
symmetry
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Toy model of spiral galaxy

⇠ 15 kpc

RHalo ⇠ 100kpc

MHalo ⇠ 1012M�
M(r) / r

hvi ⇠
r

GMHalo

RHalo

⇠ 200 km/s

Mstellar ⇠ 5⇥ 1010 M�

Flat rotation curve implies

⇢(r) / 1

r2

Assuming spherical 
symmetry

• Collisionless 
• Nonrelativistic 
• Self-gravitating 
• Isotropic 
• Isothermal gas
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Hierarchical Merger Model
1) Density fluctuations after big bang lead to proto-

galactic fragments of order  
2) Fragments evolve in isolation creating stars / 

globular clusters 
3) Collisions and tidal disruptions lead to distribution 

of halo (stars and DM) 
4) Gas in the mergers interact and collapse to disk 
5) Young and metal rich stars produced in the disk

106 � 108M�

Last major merger 
~10 Gyr ago 

Minor mergers still 
happening
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Hierarchical Merger Model

Stars and DM in the 
proto-galactic 
fragments only 
interact via gravity 

Minor mergers still 
happening

http://www.stsci.edu/~dlaw/Sgr/TimeEvol.html

To find dark matter distribution, find stars from early mergers
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To find dark matter distribution, find stars from early mergers

Dark Matter Tracers

Early merger → Old star → Low metallicity

[Fe/H] = log
10

✓
NFe

NH

◆
� log

10

✓
NFe

NH

◆

�
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To find dark matter distribution, find stars from early mergers

Dark Matter Tracers

Early merger → Old star → Low metallicity

[Fe/H] = log
10

✓
NFe

NH

◆
� log

10

✓
NFe

NH

◆

�

Also helps to not look directly in the disk
|z| > zcut

zcut
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Dark Matter Tracers

Old (low [Fe/H]) stars and dark matter share 
the same velocity distributions!

[arXiv:1704.04499]

To find dark matter distribution, find stars from early mergers
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Dark Matter Tracers

Old (low [Fe/H]) stars and dark matter share 
same density profile!

[arXiv:1704.04499]

To find dark matter distribution, find stars from early mergers
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Dark Matter Tracers

Old (low [Fe/H]) stars and dark matter share 
same density profile!

[arXiv:1704.04499]

To find dark matter distribution, find stars from early mergers

Simulation shows old stars act as tracers  

Now need to measure phase space of the old stars
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Catalogs of real data
Phase Space (5-d) Spectroscopy

• Gaia DR1 (2-d) location 
for 1 billion stars
★ Cross matched with 

Tycho-2 catalog of 
Hipparcos → 

2 million stars
• Gaia DR2 (5-d) information 

for 1 billion stars

• Radial VElocity 
Experiment 

• Sloan Digital Sky 
Survey
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Catalogs of real data
Phase Space (5-d) Spectroscopy

• Gaia DR1 (2-d) location 
for 1 billion stars
★ Cross matched with 

Tycho-2 catalog of 
Hipparcos → 

2 million stars
• Gaia DR2 (5-d) information 

for 1 billion stars

• Radial VElocity 
Experiment 

• Sloan Digital Sky 
Survey

RAVE-TGAS (255,922 stars) Gaia-SDSS (193,162 stars)
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J. Herzog-Arbeitman, M. Lisanti and L. Necib, JCAP 1804, no. 04, 052

(2018) doi:10.1088/1475-7516/2018/04/052 [arXiv:1708.03635 [astro-ph.GA]].
L. Necib, M. Lisanti and V. Belokurov, arXiv:1807.02519 [astro-ph.GA].

RAVE-TGAS (255,922 stars) Gaia-SDSS (193,162 stars)

Catalogs of real data

Empirical determination of halo velocity distribution smaller 
than standard model halo → direct detection interpretation
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Requiring spectroscopic 
data reduces size of 
dataset available

Gaia measures 5-d information of 1 billion stars

Gaia Artist's impression - credits: ESA/ATG medialab; background image: ESO/S. Brunier ***** June 2013

Is it possible to classify halo stars using only 
5-d information?
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Requiring spectroscopic 
data reduces size of 
dataset available

Gaia measures 5-d information of 1 billion stars

Gaia Artist's impression - credits: ESA/ATG medialab; background image: ESO/S. Brunier ***** June 2013

Is it possible to classify halo stars using only 
5-d information?

Use deep neural 
network as generic 

distribution fitter
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Brief aside on Machine Learning

https://www.techemergence.com/what-is-machine-learning/
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How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression

 16

f(x,~a) = a0 + a1x

L(x, y,~a) =
1

N
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How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression
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Quadratic?

Is that good enough?  
How many 

parameters can we 
add?

f(x,~a) = a0 + a1x+ a2x
2



Bryan Ostdiek (University of Oregon)  18

Logistic Regression
What if we are trying to predict a class, not a number?

observable

halodisk
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Logistic Regression
What if we are trying to predict a class, not a number?

• Change the shape of function: Logistic/Sigmoid function 

Does not add 
parameters

observable

la
be

l

0

1
fS(z) =
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1 + e�z
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Logistic Regression
What if we are trying to predict a class, not a number?

• Change the shape of function: Logistic/Sigmoid function 

Does not add 
parameters

• Change the loss function: BCE 
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fS(z) =
1

1 + e�z
z = p(x, a)

Logistic Regression
What if we are trying to predict a class, not a number?
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respect to ~a

Boundary at p(x, a) = 0
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Minimize the loss with 
respect to ~a

Boundary at p(x, a) = 0

p(x, a) = a0 + x1a1 + x2a2

x2

x1

1

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2

Large + values of p(x, a) = a0 + x1a1 + x2a2

Large - values of p(x, a) = a0 + x1a1 + x2a2

Logistic Regression
What if we are trying to predict a class, not a number?
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What if there is a shape in the data?
p(x, a) = a0 + a1x1 + a2x2

+ a3x
2
1 + a4x

2
2 + a5x1x2

p(x, a) = a0 + x1a1 + x2a2

Logistic Regression
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What if there is a shape in the data?
p(x, a) = a0 + a1x1 + a2x2

+ a3x
2
1 + a4x

2
2 + a5x1x2

p(x, a) = a0 + x1a1 + x2a2

Logistic Regression



Bryan Ostdiek (University of Oregon)  21

1. Can use nearly the same process for fitting a 
curve (predicting a number) or classification 

2. Minimize a defined cost function 

3. Easy to add parameters if shape is unknown — 
worry about over-fitting 

4. If many inputs and complicated shapes, number 
of parameters necessary grows very quickly

Regression Review
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x2

x1

1

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2

Neural Networks
OR 

x1 x2 y 
0  0  0 
0  1  1 
1  0  1 
1  1  1
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Neural Networks
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a0 = �20, a1 = 15, a2 = 15

Neural Networks
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a0 = �20, a1 = 15, a2 = 15a0 = �10, a1 = 15, a2 = 15

Neural Networks
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1
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p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2
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a0 = �20, a1 = 15, a2 = 15

This system cannot 
produce XOR

(cannot make a two sided cut)

a0 = �10, a1 = 15, a2 = 15

Neural Networks

XOR 
x1 x2 y 
0  0  0 
0  1  1 
1  0  1 
1  1  0

OR 
x1 x2 y 
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0  1  1 
1  0  1 
1  1  1

AND 
x1 x2 y 
0  0  0 
0  1  0 
1  0  0 
1  1  1

x2

x1

1

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2
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x1
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Neural Networks
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0  0  0 
0  1  1 
1  0  1 
1  1  0
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Neural Networks
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1  1  0
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x2

x1

1

NOT AND

OR

1

20
-15

-15
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-15

20 XOR

AND
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15
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Neural Networks
XOR 
x1 x2 y 
0  0  0 
0  1  1 
1  0  1 
1  1  0
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Simple example showing that neural network can access ‘high-
level’ functions

To learn weights, need large training set and CPU time

Neural Networks

XOR 
x1 x2 y 
0  0  0 
0  1  1 
1  0  1 
1  1  0

x2

x1

1

NOT AND

OR

1

20
-15

-15

20

-15

20 XOR

AND
-20

15
15
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• Don’t add more 
inputs, let machine 
find own shape  

• Ability to learn ‘any’ 
function 

• More nodes/hidden 
layers allows for 
more complex 
features

1

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2

p(x, a) = a0 + x1a1 + x2a2p(x, a) = a0 + x1a1 + x2a2

x2

x1

x3

a3

Neural Networks
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Neural Network Review
• Neural networks act as universal function fitter 
• Deep networks (many hidden layers) allow the network to 

pick its own features

Is it possible to classify halo stars without spectroscopy?
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Is it possible to classify halo stars using only 5-d 
information?

Stellar information from Gaia: 
• Galactic longitude (l) 
• Galactic latitude (b) 
• Proper motion (ascension) 
• Proper motion (declination) 
• Parallax (distance = 1 / parallax)

rate of change of these, 
transferred to different 

coordinate system
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How to train the network if we don’t know labels for the stars?

Sampling

• Draw stars from 
model distributions 

• Defined labels 
• Fast data generation

Simulation

• Distributions from 
interaction 

• Labels from merger 
history 

• Can’t generate 
ourselves

Is it possible to classify halo stars using only 5-d 
information?
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Learning the halo
Sampling
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Learning the halo

Sampled

Preliminary
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Learning the halo

PreliminaryPreliminary Preliminary

PreliminaryPreliminary
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Halo Non-halo FPR TPR Purity

Galaxia test set 4245 2441801 - - -

NN > 0.98929 1359 151 6.26⇥10
�5

0.320 90%

ZM 1093 193 7.90⇥10
�5

0.257 85%

Kinmatic 3139 1763 7.22⇥10
�4

0.739 64%

Metallicity 3880 44404 0.0182 0.914 8.0%

Compare with other methods

Metallicity selection use gaussian mixture model on 3D velocities. One group should
have a peak consistent with the disk (either in vy or v�). The halo stars are then defined
as the stars which have [Fe/H]< �1 and are not part of the group with velocities consistent
with the disk.

Kinematic selection defines any star which has |v � vLSR| > vLSR as halo, where v =
(vx, vy, vz) and vLSR = (0, 232, 0) km/s.

ZM: |z| > 1.5 kpc an [Fe/H] < -1.5
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Learning the halo

Neural Network
[Fe/H] < �1.5, |z| > 1.5 kpc

Kinematic
Metallicity

True Halo Stars

Preliminary Preliminary

Preliminary
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Learning the halo
Is it possible to classify halo stars using only 5-d 

information?

• Classification is possible! 

• Can perform better than 
traditional methods 

• High purity still preserves 
underlying distributions

Sampling

• Draw stars from 
model distributions 

• Defined labels 
• Fast data generation
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information?
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• Can’t generate 
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Learning the halo

The Latte suite of FIRE-2 cosmological zoom-in baryonic simulations of Milky Way-mass galaxies (Wetzel et al 2016), part 
of the Feedback In Realistic Environments (FIRE) simulation project, were run using the Gizmo gravity plus hydrodynamics 
code in meshless finite-mass (MFM) mode (Hopkins 2015) and the FIRE-2 physics model (Hopkins et al 2018).

Synthetic Gaia DR2-like surveys of the Latte suite of FIRE-2 simulations were created via the Ananke framework (Sanderson et al 2018).

Simulation
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Learning the halo
Simulation

• Not smooth 
distributions 

• Very large dataset 

• Expect this to be 
more challenging 

• How do deal with 
“measurement” 
errors
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Learning the halo
Simulation

Looks promising, still have issues to deal with
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Conclusion
Hierarchical 

Merger Model

DM tracers
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Gaia+Spectroscopic 

DM tracers
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Conclusion
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Hierarchical 
Merger Model

Gaia+Spectroscopic Use NN to unlock full 
potential of Gaia

DM tracers
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Backup 



Bryan Ostdiek (University of Oregon)  43

Z
f(x,v) d3x d3v = 1

@f

@t
+ ẋ

@f

@x
+ v̇

@f

@v
= 0

Boltzmann equation  
•Non-relativistic 
•Collisionless

Toy model of spiral galaxy
f(x,v)Examine the phase space distribution of the halo:

(probability)

Conservation of 
probability 
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Z
f(x,v) d3x d3v = 1

@f

@t
+ ẋ

@f

@x
+ v̇

@f

@v
= 0

Boltzmann equation  
•Non-relativistic 
•Collisionless

Steady state / 
Virialized / Equilibrium f(x,v) = f(E) E = �� 1

2
v2

Toy model of spiral galaxy
f(x,v)Examine the phase space distribution of the halo:

(probability)

Conservation of 
probability 

0

f(x,v) / e
��v2/2

�2

must be function of 
integrals of motion
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Toy model of spiral galaxy
Use the phase space density to get derive the particle density

⇢(x) =

Z
d3v f(x,v) =

Z
4⇡v2f(x,v) dv / e�/�

2

� / �2 log ⇢(x)
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Toy model of spiral galaxy
Use the phase space density to get derive the particle density

⇢(x) =

Z
d3v f(x,v) =

Z
4⇡v2f(x,v) dv / e�/�

2

Use Gauss’ Law: 

� / �2 log ⇢(x)

r2� = �4⇡G⇢(x) / r2
�
�2 log ⇢(x)
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Toy model of spiral galaxy
Use the phase space density to get derive the particle density

⇢(x) =

Z
d3v f(x,v) =

Z
4⇡v2f(x,v) dv / e�/�

2

Use Gauss’ Law: 

� / �2 log ⇢(x)

r2� = �4⇡G⇢(x) / r2
�
�2 log ⇢(x)

�

⇢(x) / �2

2⇡Gr2
• collisionless  
• self-gravitating 
• isotropic 
• isothermal gas f(v) / e

�v2

2�2
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http://www.tapir.caltech.edu/~sheagk/starvids.html

NOT a toy model of spiral galaxy

Evolution of a MW-mass galaxy 
in the Latte suite of FIRE-2 

simulations
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NOT a toy model of spiral galaxy
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http://www.tapir.caltech.edu/~sheagk/starvids.html

NOT a toy model of spiral galaxy

Maybe the assumptions of 
equilibrium are not so good
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Dark matter direct detection

Dark matter

Nucleus
v�

vN = 0
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Dark matter direct detection

Dark matter

Nucleus

Kinetic energy of recoiling nucleus: ER,max =
2µ2v2�
MN

Only detect recoils above threshold energy

v�,min =

s
MNER,threshold

2µ2
Small mass needs 

more velocity
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Dark matter direct detection

dR

dER
=

1

mN

⇢�
m�

Z vmax

vmin

d3v vf̃(v)
d�(v)

dER

The rate of nuclear recoils:
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Dark matter direct detection

⇢�
m�

= n� : how many dark matter particles around

dR

dER
=

1

mN

⇢�
m�

Z vmax

vmin

d3v vf̃(v)
d�(v)

dER

The rate of nuclear recoils:
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Dark matter direct detection

⇢�
m�
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: how likely to scatter given the velocity
d�(v)
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Dark matter direct detection

⇢�
m�

= n� : how many dark matter particles around

f̃(v) : the probability to have certain velocity

: how likely to scatter given the velocity
d�(v)

dER

dR
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⇢�
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dER
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Dark matter direct detection

⇢�
m�

= n� : how many dark matter particles around

f̃(v) : the probability to have certain velocity

: how likely to scatter given the velocity
d�(v)

dER

dR

dER
=

1

mN

⇢�
m�

Z vmax

vmin

d3v vf̃(v)
d�(v)

dER

minimum velocity to 
achieve ER 

galaxy escape velocityThe rate of nuclear recoils:
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Dark matter direct detection

f̃(v) : the probability to have certain velocity

sensitivity falls off as          
for fixed mass density. 

1/m�

ER, threshold
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https://www.cosmos.esa.int/web/gaia/dr2
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Toy model of spiral galaxy

[arXiv:1802.06039]

f(v) =

(
1
N

⇣
e�v2/v2

0 � e�v2
esc/v

2
0

⌘
v < vesc

0 v > vesc


