PHY 250 (P. Horava) Homework Assignment 1 Solutions

Grader: Uday Varadarajan

1. Problem 1.1 of Polchinski, Vol. 1:
(a) Consider the usual relativistic point particle action in flat Minkowski space, use the parameterization $X^{0}=\tau$ and then take the non-relativistic limit,

$$
\begin{equation*}
S=-m \int d \tau \sqrt{-\dot{X}^{\mu} \dot{X}_{\mu}}=-m \int d \tau \sqrt{1-\dot{X}^{i} \dot{X}_{i}} \approx \int d \tau\left[\frac{1}{2} m \dot{X}^{i} \dot{X}_{i}-m\right] . \tag{1.1}
\end{equation*}
$$

This clearly has the usual non-relativistic form with the potential energy being the rest mass.
(b) Consider the NG action using the reparameterization invariance of the world sheet to fix $X^{0}=\tau$ and $\partial_{\sigma} X^{i} \partial_{\sigma} X^{i}=1$. In this gauge, $\partial_{\sigma} X^{i}=\hat{\mathbf{x}}^{\mathbf{i}}$ is a unit vector tangent to the string, while $\partial_{\tau} X^{i}=\mathbf{v}^{\mathbf{i}}$ is its velocity. Further, the integral over σ yields the length of the string. Thus, we can rewrite the NG action as

$$
\begin{align*}
S & =-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\operatorname{det} \partial_{a} X^{\mu} \partial_{b} X_{\mu}} \\
& =-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{\left(1-\partial_{\tau} X^{i} \partial_{\tau} X_{i}\right)\left(\partial_{\sigma} X^{i} \partial_{\sigma} X_{i}\right)+\left(\partial_{\sigma} X^{i} \partial_{\tau} X_{i}\right)^{2}} \tag{1.2}\\
& =-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{1-\mathbf{v} \cdot \mathbf{v}+(\mathbf{v} \cdot \hat{\mathbf{x}})^{2}}
\end{align*}
$$

Now, the transverse velocity of the string is given by $\mathbf{v}_{\perp}=\mathbf{v}-(\mathbf{v} \cdot \hat{\mathbf{x}}) \hat{\mathbf{x}}$, and since

$$
\begin{equation*}
\mathbf{v}_{\perp} \cdot \mathbf{v}_{\perp}=\mathbf{v} \cdot \mathbf{v}-\mathbf{2}(\mathbf{v} \cdot \hat{\mathbf{x}})^{2}+(\mathbf{v} \cdot \hat{\mathbf{x}})^{2}=\mathbf{v} \cdot \mathbf{v}-(\mathbf{v} \cdot \hat{\mathbf{x}})^{2} \tag{1.3}
\end{equation*}
$$

we can rewrite the NG action as

$$
\begin{equation*}
S=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{1-\mathbf{v}_{\perp} \cdot \mathbf{v}_{\perp}} \tag{1.4}
\end{equation*}
$$

Taking the non-relativistic limit, we find

$$
\begin{equation*}
S=\int d \tau d \sigma\left[\frac{1}{4 \pi \alpha^{\prime}} \mathbf{v}_{\perp} \cdot \mathbf{v}_{\perp}-\frac{1}{2 \pi \alpha^{\prime}}\right] \tag{1.5}
\end{equation*}
$$

Integrating over σ just yields a potential term proportional to the length of the string, while the coefficient of both terms yields a mass per unit length of $T=\frac{1}{2 \pi \alpha^{\prime}}$.

