
PHY 250 (P. Horava) Homework Assignment 3 Solutions
Grader: Uday Varadarajan

1. Supersymmetrization of Problem 1.4 of Polchinski, Vol. 1:

We consider the states of the open superstring spectrum at the first massive level in the GS
formalism. In light cone gauge, the physical Hilbert space is constructed from two sets of oscillators,
the Sα

−m and αi
−m for m > 0, i = 1 . . . 8, α = 1 . . . 8, acting on the vacuum. The vacuum state can

be determined by the requirement that it must furnish a representation of the zero-mode algebra
of the oscillators. This algebra is a tensor product of a Heisenberg algebra associated with the
bosonic zero modes (xµ and pµ) and the Clifford-like algebra associated with the fermionic zero
modes (Sα

0 , obeying {Sα
0 , S

β
0 } = δαβ). Of course, the bosonic zero modes are taken care of by using

on-shell momentum eigenstates |kµ〉 and we will ignore them from here on out. For the fermionic
zero modes first note that the above Clifford algebra is not the usual Clifford algebra for Spin(8),
as the Sα

0 transform as spinors rather than vectors. However, because of SO(8) triality, this really
doesn’t matter, and this algebra is satisfied by 16 × 16 matrices of the same form as the usual
Dirac matrices for spin(8), but with the indices rotated

Sα
0 ∼

(
0 γα

iα̇

γα
α̇i 0

)
. (1.1)

Note that the γα
α̇i are required to satisfyγα

α̇iγ
β

iβ̇
+ γβ

α̇iγ
α
iβ̇

= 2δαβδα̇β̇ and are explicitly constructed
(with rotated indices) in Appendix 5.B in GSW. Examining the indices, we see that these matrices
act on a direct sum of an SO(8) vector |j〉 and the conjugate SO(8) spinor |α̇〉. As discussed in
class, these states are massless (the ordering ambiguities of the two sets of oscillators cancel) and
correspond to a massless gauge boson and its gaugino superpartner. The first massive level with
α′m2 = 1 is obtained by exciting the ground state with either αi

−1 or Sα
−1, resulting in the states,

αi
−1 |j〉 (64 bosons) Sα

−1 |j〉 (64 fermions) (1.2)
Sα
−1 |α̇〉 (64 bosons) αi

−1 |α̇〉 (64 fermions). (1.3)

(a) First we consider the fermions, which arise from two SO(8) vector-spinors of opposite chirality
(Note: these are reducible as we will explain below, giving rise to a opposite chirality pairs of
Majorana-Weyl spinors and gravitinos). Consider the tensor product of a Majorana SO(9)
spinor ψa (we can think of this as a direct sum of two Majorana-Weyl SO(8) spinors, ψa =
ηα⊕ ξα̇) and an SO(9) vector vI , I = i, 9. This is a reducible representation of SO(9), a 144.
We can extract a spinor “trace” by contracting the vector index with nine dimensional gamma
matrices, χb ≡ ΓI

abvIψ
b. Removing this trace, we are left with the irreducible gravitino, which

is a 144− 16 = 128. This is exactly the sum of the two fermionic SO(8) reps above.
The 128 bosons arise from an SO(8) chiral bispinor and a two-tensor. A general two-tensor
tij clearly just decomposes into a symmetric traceless two-tensor gij = 1

2 (tij + tji), an
antisymmetric two-tensor bij = 1

2 (tij − tji), and a scalar tii. This is the decomposition
64 = 35v + 28 + 1. Now we consider the SO(8) irrep content of a chiral bispinor ηαξα̇. To
do this, it is convenient to write η and ξ as 16 dimensional Dirac spinors,

ψ =
(
η
0

)
χ =

(
0
ξ

)
, (1.4)

satisfying the Weyl and Majorana conditions, 1
2 (1+Γ9)ψ = ψ, 1

2 (1−Γ9)χ = χ, and ψ† = ψT ,

η† = ηT . Note that with this choice of basis, Γ9 =
(

1 0
−1 0

)
. To extract its irreps, we

will consider “traces” of the above state via contractions with antisymmetrized products of
16 dimensional SO(8) gamma matrices Γi (recall that the symmetric parts are trivial because
of the Clifford algebra relation {Γi,Γj} = 2δij). In particular, we can construct the tensors,

Ai1...ik = ψ†Γ[i1 · · ·Γik]χ (1.5)
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Note that if k is even, using the Weyl conditions and the hermiticity of Γ9,

Ai1...ik = ψ†Γ[i1 · · ·Γik]χ

= ψ†Γ[i1 · · ·Γik] 1
2
(1− Γ9)χ

= ψ† 1
2
(1− Γ9)Γ[i1 · · ·Γik]χ

= (
1
2
(1− Γ9)ψ)†Γ[i1 · · ·Γik]χ = 0.

(1.6)

Thus, we must have k odd. Further, by inserting Γ9 into the above expression, we obtain the
duality relation, (up to a sign)

Ai1...ik =
±

(8− k)!
εi1...i8Aik+1...i8 . (1.7)

Thus, we only need to consider k = 1 and k = 3, so we get a vector and an antisymmetric
three-tensor, corresponding to the decomposition, 64 = 8v + 56v.
Now, consider an SO(9) antisymmetric three-tensor AIJK ( an 84) and a symmetric, traceless
two tensor, gIJ (a 44). As 128 = 84 + 44, this pair has the right dimension to account for
all the above states. To see that this is indeed the case, we can decompose them explicitly in
terms of SO(8) representations. The three-tensor decomposes into an SO(8) antisymmetric
three-tensor Aijk (a 56v), and an anti-symmetric two-tensor Aij9 (a 28). The symmetric,
traceless two-tensor decomposes into an SO(8) traceless two-tensor gij (a 35v), a vector gi9

(an 8v), and a scalar g99 (a 1). These match precisely with the SO(8) representations we
found above.

(b) Clearly, we have 128 bosons and 128 fermions so we have supersymmetry at this level.

(c) Since the massless modes of 11D supergravity must fit into irreps of SO(9) with equal numbers
of bosons and fermions, it is not hard to believe that these are precisely the same irreps that
show up above. Indeed, the spectrum of 11D SUGRA consists of exactly a massless graviton,
a three-form gauge field, and gravitino, just what we found above.

2. We will consider the first massless level of the open superstring using the NSR formalism in light
cone gauge. The only subtlety here is making sure that we apply the GSO projection appropriately.
Here, have two different sectors, the NS and R.

(a) The NS ground state is a tachyonic scalar |0〉 (again, we systematically ignore the momentum
for notational simplicity) of mass α′m2 = −1/2. We generate the spectrum by acting upon it
by using half-integrally moded fermionic oscillators bi−r, r ∈ N + 1/2, and integrally moded
bosonic oscillators αi

−n, n > 0. Of course, for consistency, we must impose the GSO projec-

tion, which in the NS sector is a projection by the operator G = (−1)F = −(−1)
∑

r
bi
−rbi

r .
In particular, the ground state tachyon is odd and therefore projected out. The lowest lying
state in this sector is a massless vector at level N = 1/2, bi−1/2 |0〉 We now catalog all states
at levels N = 1 and N = 3/2 along with their eigenvalues under G.

αi
−1 |0〉 (N = 1, α′m2 = 1/2, G = −1, 8v)

bi−1/2b
j
−1/2 |0〉 (N = 1, α′m2 = 1/2, G = −1, 28)

bi−1/2α
j
−1 |0〉 (N = 3/2, α′m2 = 1, G = +1, 64 = 1 + 35v + 28)

bi−1/2b
j
−1/2b

k
−1/2 |0〉 (N = 3/2, α′m2 = 1, G = +1, 56v)
bi−3/2 |0〉 (N = 3/2, α′m2 = 1, G = +1, 8v)

(1.8)

Eliminating the G odd states, we are left only with the states at N = 3/2, all of which are
space-time bosons. We find an SO(8) scalar (1), vector (8v), antisymmetric two-tensor (28),
traceless symmetric two-tensor (35), and an antisymmetric three-tensor 56v, exactly as in
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the GS computation in Problem 1, 128 = 1 + 8v + 28 + 35v + 56v. Just as in that case,
these fit into an SO(9) traceless symmetric two-tensor and antisymmetric three-tensor.
The R ground state must admit a representation of the R zero modes, which form an SO(8)
Clifford algebra (up to normalization) {di

0, d
j
0} = δij . As is shown in Appendix 5.B of GSW,

the smallest such representation is by 16×16 matrices (the same as those exhibited in Problem
1 above, but with rotated indices) operating on a 16 dimensional Majorana spinor. Note
that this spinor is irreducible as a representation of the SO(8) Clifford algebra but reducible
as a representation of spin(8). Thus, the R ground state can be taken to be an SO(8)
Majorana spinor, which is the sum of two chiral Majorana-Weyl spinors |a〉 = |α〉 ⊕ |α̇〉.
The R spectrum is generated by the integrally moded fermionic operators di

−n and bosonic
operators αi

−n, n > 0 acting on the R ground states. The GSO projection in the R sector

acts as Γ̄ = (−1)F = Γ9(−1)
∑

n>0
di
−ndi

n , where Γ9 |α〉 = |α〉 and Γ9 |α̇〉 = − |α̇〉. Since the
R ground states are massless, we see that the GSO projection will leave precisely a single
massless Majorana-Weyl fermion, the superpartner to the photon, at the lowest level. At
level one, before GSO projection, we have the states,

αi
−1 |α〉 (G = +1, 64 = 8s + 56s)
di
−1 |α〉 (G = −1, 64 = 8s + 56s)
αi
−1 |α̇〉 (G = −1, 64 = 8c + 56c)
di
−1 |α̇〉 (G = +1, 64 = 8c + 56c)

(1.9)

Thus, we see that we are again left with two spinor-vectors of opposite chiralities, just as in
the GS case, and they can be assembled into a spin 3/2 SO(9) multiplet.

(b) We have found 128 bosons and 128 fermions just as before.

(c) Obviously, the same relation to the massless states of 11D supergravity obtains.

3. We consider the term,
i

2π

∫
Σ

d2σ e ψ̄ρaωAB
a ρABψ. (1.10)

Note that as ρa = ea
Cρ

C and using the Majorana condition, ψ̄ = ψ†ρ0 = ψT e0Dρ
D, we can rewrite

this term as
i

2π

∫
Σ

d2σ e ea
Ce

0
Dω

AB
a ψT ρDρCρABψ. (1.11)

Since ψ is a two component real spinor, this term will vanish by fermi symmetry unless the matrix
ρDρCρAB is antisymmetric. However, in 1 + 1D we can find a basis in which both the Majorana
and Weyl conditions can be simultaneously imposed, so ρ1ρ2 = ρ3 can be taken diagonal. Since
ρ1ρ1 = ρ2ρ2 = 1 by the Clifford algebra, these facts imply that the product of four gamma matrices
is always a symmetric matrix. Thus, this term vanishes.
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