Bernard Sadoulet

Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle

GEODM Astrophysics and Cosmology (INPAC) The Germanium Observatory for Dark Matter at DUSEL

Brief review of the field

WIMPs: Does the physics at electroweak scale explain also dark matter? Direct Detection: Latest results of a fast expanding community The next 5 yrs: Complementarity between Direct Detection, Indirect and LHC The "competition": going to high target mass while staying background free

Dark Matter at DUSEL

Physics scenarios: Discovery-> Observatory, no discovery, totally different physics The role of Germanium at low temperature: high signal/noise, perfect rejection GEODM: 1.5 ton Ge at 7400 ft at DUSEL. PI: Sunil Golwala

GEODM Engineering approach
What makes sense for a project ≥ 10 years away: evolving baseline S4 NSF proposal, DOE companion proposal Involvement of LBNL

Why WIMPs?

Bringing together cosmology and particle physics:

a remarkable concidence

Particles in thermal equilibrium

+ decoupling when nonrelativistic
Freeze out when annihilation rate ≈ expansion rate

 $\Rightarrow \Omega_x h^2 = \frac{3 \cdot 10^{-27} \, cm^3 \, / \, s}{\left\langle \sigma_A v \right\rangle} \Rightarrow \sigma_A \approx \frac{\alpha^2}{M_{EW}^2}$

Generic Class

Cosmology points to W&Z scale

Inversely standard particle model requires new physics at this scale

(e.g. supersymmetry or additional dimensions)

=> significant amount of dark matter

Weakly Interacting Massive Particles

2 generic methods:

Direct Detection = elastic scattering

Indirect: Annihilation products

 γ 's e.g. 2 γ 's at E=M is the cleanest from sun &earth ≈ elastic scattering dependent on trapping time

Large Hadron Collider

Direct Detection

Elastic scattering

Expected event rates are low
(<< radioactive background)
Small energy deposition (≈ few keV)
<< typical in particle physics

Signal = nuclear recoil (electrons too low in energy)

≠ Background = electron recoil (if no neutrons)

Signatures

- · Nuclear recoil
- Single scatter ≠ neutrons/gammas
- Uniform in detector

Linked to galaxy

- Annual modulation (but need several thousand events)
- Directionality (diurnal rotation in laboratory but 100 Å in solids)

Experimental Approaches

A blooming field

Direct Detection Techniques

As large an amount of information and a signal to noise ratio as possible

At least two pieces of information in order to recognize nuclear recoil extract rare events from background (self consistency)

+ fiducial cuts (self shielding, bad regions)

Where are we? January 09

Scalar couplings: Spin independent cross sections

latest compilation by Jeff Filippini Gray=DAMA 2 regions(Na, I) from Savage et al.

The 2 best experiments

Xenon 10 April 2007

10 background events

CDMS II 0802.3530 PRL 102(2009)

0 background event (Expected 0.6±0.5)

Discovery potential ≈5 times Xenon 10

Where are we? January 2009

Spin dependent couplings

 a_p vs a_n at mass of $60GeV/c^2$

The next 5 years

WIMP scattering on Earth: e.g. CDMS: currently leading the field

Halo made of WIMPs
1/2 shown for clarity

WIMP production on Earth

WIMP annihilation in the cosmos

GLAST/Fermi Launched 11 June 2008

We need all three approaches

Direct detection

May well provide a detection $+ \approx$ cross section and mass But what is the fundamental physics behind it? What can we learn about the galaxy?

LHC

May well give rapidly evidence for new physics: missing energy

But is the stable? => need direct or indirect detection

Ambiguity in parameters: mass/cross section

Indirect detection

May well provide smoking gun for both dark matter and hierarchical structure formation (subhalos)

But possible ambiguity in interpretation => need direct detection

Complementary sensitivity to different parameter space region

How to get to larger masses?

Direct Detection Techniques

Three Challenges

- · Understand/Calibrate detectors
- · Be background free much more sensitive than background subtraction eventually limited by systematics

· Increase mass while staying background free

10 **B.Sadoulet** GEODM 26 February 09

The Competition (a simplified view)

COUPP:

Excellent upper bound machine? sensitive to alpha contamination Bubble chamber 2 kg ->100 kg not enough information for discovery

Liquid Xenon:

scintillation+ionization self shielding ≈2.5 cm 10 kg->100 kg->20 tonne

Liquid Argon:

scintillation+ionization pulse shape discrimination 2 kg->100 kg->50 tonne

Promising but not proven background

mediocre discrimination 99% can be defeated by Rn diffusion cosmogenics at DUSEL 4850ft not cheap 1 ton of Xenon =\$10M

Promising

need ³⁹Ar depletion (underground source) far UV -> wave shifter, high threshold

Low temperature Ge: Promising extrapolation path

phonons+ionization Zero background so far 5kg->15kg->150kg->1.5 tonne

Many new ideas

Single phase-> simplicity High or low pressure gas TPCs

large 150 mm Ø, 50 mm thick crystal large scale multiplexing (e.g. RF) automation of TES process or KIDs separated function simplification of testing

Who will be the winners?

We do not know yet...

Likely to take some time of systematic work Need strong R&D basically at full scale

Go beyond propaganda

"My detector is bigger than yours!"

Not the whole story: Detailed understanding of the phenomenology

Zero background!

One background can hide another one

In any case we need at least two different technologies

Cross checking each other

Protection against unexpected background

Physics! e.g.

Coherence additive quantum number: A² dependence (scalar coupling) spin dependence

Threshold in target mass=> dark matter excited state

DUSEL Dark Matter Science

If we detect WIMPs, 3 obvious directions

1) Measurement of mass and detailed comparison with LHC and Fermi

We need large target masses to get statistics

2) Directionality => link to the galaxy

Low pressure TPC but probably need 100kg-1 ton: 1000-10000m³ with mm³ pixels

We need strong R&D now!

3) Detection of streams

Step in energy deposition: statistics+energy resolution Directionality

If we have not detected WIMPs

Close loop holes and fine tuning regions Importance of zero background!

The role of Germanium

Principle: Detect lower energy excitations

15 keV large by condensed matter physics standards

=> High signal to noise ratio

+ Several pieces of information ionization arrival time of athermal phonons rise time

=> multidimensional discrimination

Only technique so far with zero background!

Xenon has to master contamination in liquid to be self shielding

Argon has to reduce/reject 39Ar

Challenge: operation at low temperature

+ sophisticated technology

intensive in manpower for fabrication and testing

- 1. Particle Cosmology
 2. Direct: Noble liquids
 3. Direct: Phonon mediated Multidimensional Discrimination

Ionization yield

Timing -> surface discrimination

Fix cuts blind (with calibration sources)

to get ≈0.5 events background

timing parameter[µs]

B.Sadoulet

GEODM

Germanium Observatory for Dark Matter at DUSEL PI: Sunil Golwala

Approach

Large detector elements

7.5cm diameter \times 2.5cm thickness -> 15cm diameter \times 5cm thickness mass per detector 0.64 kg -> 5.1 kg

At the same time maintain mass/sensor constant through multiplexing Current baseline TES ≥32 per detector, dual sided

Automation of production (in particular spinning/exposure of photoresist) Simplification of testing <= larger yield, if possible no implantation

Scope

1.5 ton of Ge, \$50M, 3 years construction Installation at 7800 ft (lower risk: no cosmogenic neutrons) Background reduction at source and improvement of rejection => 1/2000 CDMS II

 $2 \cdot 10^{-47}$ cm² per nucleon in 4 years (2021)

Larger Detector Mass

SuperCDMS 15 kg detectors: 1cm-> 1" 250g ->635 g

Much larger detectors -> GEODM

Liquid N2 Ge crystals limited to 3"
≈ 100 dislocation/cm³

But we showed recently that dislocation free works at low temperature!

Umicore grows (doped) 8" crystal
6"x2" or 8"x1" ≈ 5kg + Multiplexing

General Layout

Similar to SNOLAB set up that we are designing

Physics Reach

Supersymmetry

Kaluza Klein

Bulk Electromagnetic Background

	raw rate	relative	single-scatter	relative	misid. rate	overall
stage	$[/\mathrm{kg/d}]$	raw rate	\times misid.	misid.	$[/\mathrm{kg/d}]$	gain
bulk EM						
CDMS II	296	1	1.2×10^{-6}	1	7.2×10^{-4}	1
published						
CDMS II	296	1	5.9×10^{-7}	1/2 = 0.5	3.6×10^{-4}	1/2 = 0.5
final			bette	er cuts		
SuperCDMS	296	1	1.9×10^{-7}	1/6 = 0.17	1.2×10^{-4}	1/6 = 0.17
Soudan			2.5-cm thic	k, better eff.		
SuperCDMS	180	(3/5) = 0.6	1.2×10^{-8}	1/96 = 0.01	4.5×10^{-6}	1/160
SNOLAB	inter	nal shield	5-cm thick,	$\times 2$ electrodes		= 0.00625
			×2 phono	$_{ m n}$ collection		
			×2 phon	on timing		
GEODM	45	(3/20) = 0.15	4×10^{-9}	1/300 = 0.003	3.6×10^{-7}	1/2000
DUSEL	better s	$ m_{stock/shield}$	$\times 3$ detector	improvements		= 0.0005

Progression that we believe is reasonable

Surface Electromagnetic Background

raw rate	$\operatorname{relative}$	single-scatter	relative	misid. rate	overall
$[/\mathrm{kg/d}]$	raw rate	\times misid.	misid.	[/kg/d]	gain
3.4	1	1.0×10^{-4}	1	7.6×10^{-4}	1
3.4	1	5.3×10^{-5}	1/2 = 0.5	3.8×10^{-4}	1/2 = 0.5
		bette	r cuts		-
0.83	1/4 = 0.25	4.4×10^{-5}	5/12 = 0.42	7.9×10^{-5}	1/10 = 0.10
2.5-cm thick		bette	er eff.		,
$\times 1.6$ lower $^{210}{\rm Pb}$					
0.41	(1/8) = 0.125	4.0×10^{-5}	5/96 = 0.05	5.0×10^{-6}	1/150
$\times 2$ low	er contam.	$\times 2$ ele	ctrodes		= 0.0065
		$\times 2$ phonon collection			
		$\times 2$ phone	on timing		
0.10	(1/32) = 0.031	1.3×10^{-5}	1/60 = 0.017	4.1×10^{-7}	1/1840
$\times 2.5$	-cm thick	$\times 3$ detector i	improvements		= 0.00054
$\times 2$ lower contam.					
	[/kg/d] 3.4 3.4 0.83 2.5-6 ×1.6 le 0.41 ×2 low				

Progression that we believe is reasonable

Radiogenic Neutrons

	raw rate	relative	single-scatter	relative	misid. rate	overall
stage	[/kg/d]	raw rate	\times misid.	misid.	[/kg/d]	gain
radiogenic ne	utrons					
CDMS II	1.2×10^{-4}	1	1	1	1.2×10^{-4}	1
published						
CDMS II	1.2×10^{-4}	1	1	1	1.2×10^{-4}	1
final						
SuperCDMS	1.2×10^{-4}	1	1	1	1.2×10^{-4}	1
Soudan						
SuperCDMS	6.0×10^{-6}	1/20 = 0.05	1	1	6.0×10^{-6}	1/20 = 0.05
SNOLAB	better stock/shield					
GEODM	4.0×10^{-7}	(1/300) = 0.003	1	1	4.0×10^{-7}	1/300
DUSEL	better s	stock/shield				= 0.003

Low risk

Schedule and costs

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
DUSEL	S4	S5	MREFC proposal		DUSEL		4850ft		7400ft				
CDMSII(4 Ge, 2e-44	-	iperCDMS S Ge, 5e-45)	Soudan) NSF+DOE										
•	CDMS Souda or Fabricatio		SuperCDMS S Detector Fab					_					
	SNOLAB ructure		SNOLAB tructure	Super		AB (100 kg, +DOE	3e-46)						
	ODM Cocept	•	iminary desig +DOE	jn (GEODM final NSF+D		GEC	DM constru NSF+DOE	ction				
									GEODM Install.	G	•	; 2e-47cm^: +DOE	2)

GEODM= natural succession to Soudan/SNOLAB

SNOLAB brings resilience to program e.g. against DUSEL slippage

Subsystem	SuperCDMS Soudan	GEODM
Detector Production (incl. cold electronics and hardware)	\$ 5.6	\$36M
Warm Electronics	\$0.125M	\$2M
Cryostat/Shield	\$ 3.1M	\$10M
DAQ	$\$~0.1\mathrm{M}$	\$1M
Lab Interface/Experimental Enclosure	\$0.5M	\$1M
Total	\$9.4M	\$50M

Table 1: Cost summary for SuperCDMS Soudan and GEODM

GEODM in perspective

More or less on current historical curve of progress

May be "blown out of the water" by noble liquids but no evidence so far!

Engineering Approach

General strategy

GEODM will not take place for at least 9 years

Not bound by current technical solutions: Explore phase space

But profit from technical legacy

Present as much as possible a baseline design ≠arborescence of choices

Coherent set of choices

Evolution of baseline design as new approaches become available from long term R&D

Facilitated by "generic solutions" when they are available e.g.

Towers that could accommodate high impedance wiring

RF multiplexing that can accommodate both TES and Kinetic Inductance

Sensor Baseline

W transition edge

Very significant recent improvements

Full wafer exposure with EB aligner => much higher yield Higher purity target: lower Tc => maybe no need to implant Possibility of automation of spinning / exposure/baking

Multiplexing

Time multiplexing 10MHz may be limited to 16 channels RF frequency multiplexing 400MHz: 128 channels

Double side read out with AC/RF biasing

35% efficiency-> 70%

solves low impedance biasing of TES on side of high impedance ionization read out

635g -> 1.2 kg equivalent

R&D in progress

Kinetic inductance instead of TES

Advantages: Not dissipative, no noise from quasiparticles if T<<Tc

No sharp transition=> reproducibility

In some schemes: separation of functions (probe wafers)

Readily multiplexable with RF multiplexing

But have to control noise from substrate + microphonics

Arriving to CD2

54 is not sufficient

\$2.065

Focus on highest risk items

Companion DOE proposal

LBNL lead?

\$1.75M

Core FNAL and SLAC

≈\$1.6M

Task	Base	SuperCDMS SNOLAB	NSF S4	companion DOE	DUSEL R&D	Other
1881	Dase	SNOLAD	Nor 54	DOE	DUSEL R&D	Other
background simulations	×	×				
low-bgnd materials sourcing	×	×				×
detector design	×	×			×	
large detector fab/automation			×			
detector test automation			×			
cold hardware/ electronics	×			×		×
warm electronics	×	×		×		
cryostat/shield	×	×		×		×
DAQ/analysis	×			×		
lab interface/safety			×			

28

LBNL Involvement

Scientific opportunity

+ complementarity to LHC and Dark Energy programs

More generally: Does the lab wants a leadership role in Dark Matter?

A \$50M experiment

needs much more engineering and project control than a smaller experiments We need the lab to arrive at a credible CD2 (expertise + resources)

Mass production and testing more aligned with national lab expertise/
capability

Natural partnership with Fermilab (Cryogenics, warm electronics) and SLAC (detector fabrication, automatic testing)

Aligned with service role of the laboratory

Division of responsibility still open

In addition to interface with DUSEL and safety (natural for LBNL)

Ge large crystals and contact (Haller, Luke)

Cold electronics (FET, SQUIDs, RF elements) and hardware (mechanical+ electronic engineering)

RF multiplexing (fast ADC/DAC, FGPA)

Overlap with other goals (LBNL as a leader in instrumentation e.g. Majorana, CUORE, Homeland security, CMB, high resolution gamma)

Need young people with 20 year horizon

≥1 Divisional Fellow

Conclusions

Importance of the pre-DUSEL program

Significant chance of discovery

10⁻⁴⁵ cm² <2010 10⁻⁴⁶ cm² <2015

Science complementary to LHC and Fermi-GLAST/ Ice Cube
What are the technologies of the future?

We need to start to develop now DUSEL program

GEODM: only technology that is background free so far <= High signal to noise, multidimensional discrimination

The technology can be simplified significantly

Large crystals

Large scale multiplexing

Faster fabrication and testing

Involvement of LBNL

Makes scientific sense for the lab to take lead in dark matter

We need the lab (+FNAL and SLAC)

Overlap between needed R&D and other lab priorities (instrumentation)

Need to engage a younger generation (e.g. DUSEL Divisional Fellows)