The CKM matrix and CP Violation (in the continuum approximation)

Zoltan Ligeti

Lawrence Berkeley Lab

Lattice 2005, Dublin

July 24-30, 2005

Plan of the talk

- IntroductionWhy you might care
- CP violation present status β : from $b \to c$ and $b \to s$ modes $\alpha \& \gamma$: interesting results last year Implications for NP in $B - \overline{B}$ mixing
- Theory developments: semileptonic and nonleptonic decays in SCET Semileptonic form factors Nonleptonic decays
- Future / Conclusions

Plan of the talk

- IntroductionWhy you might care
- CP violation present status β : from $b \to c$ and $b \to s$ modes $\alpha \& \gamma$: interesting results last year Implications for NP in $B - \overline{B}$ mixing

Precision test of CKM; search for NP Best present α , γ methods are new First significant constraints

 Theory developments: semileptonic and nonleptonic decays in SCET Semileptonic form factors Nonleptonic decays

Few applications, connections between semileptonic and nonleptonic

Future / Conclusions

Why is flavor physics and CPV interesting?

Sensitive to very high scales

$$\epsilon_K$$
: $\frac{(s\bar{d})^2}{\Lambda_{\rm NP}^2} \Rightarrow \Lambda_{\rm NP} \gtrsim 10^4 \, {\rm TeV}, \qquad B_d \ {\rm mixing:} \ \frac{(b\bar{d})^2}{\Lambda_{\rm NP}^2} \Rightarrow \Lambda_{\rm NP} \gtrsim 10^3 \, {\rm TeV}$

- Almost all extensions of the SM contain new sources of CP and flavor violation (e.g., 43 new CPV phases in SUSY [must see superpartners to discover it])
- A major constraint for model building
 (flavor structure: universality, heavy squarks, squark-quark alignment, ...)
- May help to distinguish between different models (mechanism of SUSY breaking: gauge-, gravity-, anomaly-mediation, ...)
- The observed baryon asymmetry of the Universe requires CPV beyond the SM (not necessarily in flavor changing processes in the quark sector)

How to test the flavor sector?

- Only Yukawa couplings distinguish between generations; pattern of masses and mixings inherited from interaction with something unknown (couplings to Higgs)
- Flavor changing processes mediated by $\mathcal{O}(100)$ nonrenormalizable operators
 - \Rightarrow intricate correlations between different decays of s, c, b, t quarks

Deviations from CKM paradigm may result in:

- Subtle (or not so subtle) changes in correlations, e.g., B and K constraints inconsistent or $S_{\psi K_S} \neq S_{\phi K_S}$
- Enhanced or suppressed CP violation, e.g., sizable $S_{B_s \to \psi \phi}$ or $A_{s\gamma}$
- FCNC's at unexpected level, e.g., $B \to \ell^+\ell^-$ or B_s mixing incompatible w/ SM
- Question: does the SM (i.e., virtual W, Z, and quarks interacting through CKM matrix in tree and loop diagrams) explain all flavor changing interactions?

CKM matrix and unitarity triangle

Convenient to exhibit hierarchical structure ($\lambda = \sin \theta_C \simeq 0.22$)

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = egin{pmatrix} 1 - rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

A "language" to compare overconstraining measurements

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Goal: "redundant" measurements sensi-

E.g.: B_d mixing and $b \to d\gamma$ given by different op's in \mathcal{H} , but both $\propto V_{tb}V_{td}^*$ in SM

Tests of the flavor sector

ullet For 35 years, until 1999, the only unambiguous measurement of CPV was ϵ_K

Tests of the flavor sector

• For 35 years, until 1999, the only unambiguous measurement of CPV was ϵ_K

• $\sin 2\beta = 0.687 \pm 0.032$, order of magnitude smaller error than first measurements

What are we after?

- Flavor and CP violation are excellent probes of New Physics
 - Absence of $K_L \to \mu\mu$ predicted charm
 - ϵ_K predicted 3rd generation
 - Δm_K predicted charm mass
 - Δm_B predicted heavy top

If there is NP at the TEV scale, it must have a very special flavor / CP structure

• What does the new B factory data tell us?

SM tests with K and D mesons

- CPV in K system is at the right level (ϵ_K accommodated with $\mathcal{O}(1)$ CKM phase)
- Hadronic uncertainties preclude precision tests (ϵ'_{K} notoriously hard to calculate)
- $K \to \pi \nu \overline{\nu}$: Theoretically clean, but rates small $\sim 10^{-10} (K^{\pm}), \ 10^{-11} (K_L)$ Observation (3 events): $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.5^{+1.3}_{-0.9}) \times 10^{-10}$ — need more data
- D system complementary to K, B:

Only meson where mixing is generated by down type quarks (SUSY: up squarks)

CPV & FCNC both GIM and CKM suppressed ⇒ tiny in SM and not yet observed

$$y_{CP} = \frac{\Gamma(CP \text{ even}) - \Gamma(CP \text{ odd})}{\Gamma(CP \text{ even}) + \Gamma(CP \text{ odd})} = (0.9 \pm 0.4)\%$$

• At present level of sensitivity, CPV would be the only clean signal of NP Can lattice help to understand SM prediction for $\Delta m_D, \Delta \Gamma_D$? (SD part for sure)

CP Violation

CPV in decay

• Simplest, count events; amplitudes with different weak (ϕ_k) & strong (δ_k) phases

$$|\overline{A}_{\overline{f}}/A_f| \neq 1$$
: $A_f = \langle f|\mathcal{H}|B\rangle = \sum A_k e^{i\delta_k} e^{i\phi_k}, \quad \overline{A}_{\overline{f}} = \langle \overline{f}|\mathcal{H}|\overline{B}\rangle = \sum A_k e^{i\delta_k} e^{-i\phi_k}$

• Unambiguously established by $\epsilon_K' \neq 0$, last year also in B decays:

$$A_{K^{-}\pi^{+}} \equiv \frac{\Gamma(\overline{B} \to K^{-}\pi^{+}) - \Gamma(B \to K^{+}\pi^{-})}{\Gamma(\overline{B} \to K^{-}\pi^{+}) + \Gamma(B \to K^{+}\pi^{-})} = -0.115 \pm 0.018$$

- After "K-superweak", also "B-superweak" excluded: CPV is not only in mixing
- There are large strong phases (also in $B \to \psi K^*$); challenge to some models
- Current theoretical understanding insufficient for both ϵ_K' and $A_{K^-\pi^+}$ to either prove or to rule out that NP contributes

Sensitive to NP when SM prediction is model independently small (e.g., $A_{b\rightarrow s\gamma}$)

CPV in interference between decay and mixing

• Can get theoretically clean information in some cases when B^0 and \overline{B}^0 decay to same final state

$$|B_{L,H}\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle$$
 $\lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$

Time dependent *CP* asymmetry:

$$a_{fCP} = \frac{\Gamma[\overline{B}^{0}(t) \to f] - \Gamma[B^{0}(t) \to f]}{\Gamma[\overline{B}^{0}(t) \to f] + \Gamma[B^{0}(t) \to f]} = \underbrace{\frac{2\operatorname{Im}\lambda_{f}}{1 + |\lambda_{f}|^{2}}}_{S_{f}} \sin(\Delta m t) - \underbrace{\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}}_{C_{f}} \cos(\Delta m t)$$

• If amplitudes with one weak phase dominate, hadronic physics drops out from λ_f , and $a_{f_{CP}}$ measures a phase in the Lagrangian theoretically cleanly:

$$a_{f_{CP}} = \operatorname{Im} \lambda_f \sin(\Delta m t)$$
 $\operatorname{arg} \lambda_f = \operatorname{phase}$ difference between decay paths

The cleanest case: $B o J/\psi \, K_S$

• Interference between $\overline B o\psi \overline K^0$ (b o car cs) and $\overline B o B o\psi K^0$ (ar b o car car s)

Penguins with different than tree weak phase are suppressed [CKM unitarity: $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$]

$$\overline{A}_{\psi K_S} = \underbrace{V_{cb}V_{cs}^*}_{\mathcal{O}(\lambda^2)} T + \underbrace{V_{ub}V_{us}^*}_{\mathcal{O}(\lambda^4)} P$$

First term \gg second term \Rightarrow theoretically very clean

$$\arg \lambda_{\psi K_S} = (B\text{-mix} = 2\beta) + (\deg y) + (K\text{-mix} = 0)$$

 $\Rightarrow a_{\psi K_S}(t) = \sin 2\beta \sin(\Delta m t) \text{ with } \lesssim 1\% \text{ accuracy}$

• World average: $\sin 2\beta = 0.687 \pm 0.032$ — a 5% measurement!

$S_{\psi K}$: a precision game

Standard model fit without $S_{\psi K}$

$S_{\psi K}$: a precision game

Standard model fit including $S_{\psi K}$

First precise test of the CKM picture

Error of $S_{\psi K}$ near $|V_{cb}|$ (only $|V_{us}|$ better)

Without V_{ub} 4 sol's; ψK^* and $D^0 K^0$ data show $\cos 2\beta > 0$, removing non-SM ray

Approximate CP (in the sense that all CPV phases are small) excluded

 $\sin 2\beta$ is only the beginning

Paradigm change: look for corrections, rather than alternatives to CKM

⇒ Need detailed tests
Theoretical cleanliness essential

CPV in $b \rightarrow s$ mediated decays

• Measuring same angle in decays sensitive to different short distance physics may give best sensitivity to NP ($\phi K_S, \eta' K_S$, etc.)

Amplitudes with one weak phase expected to dominate:

$$\overline{A} = \underbrace{V_{cb}V_{cs}^*}_{\mathcal{O}(\lambda^2)} [P_c - P_t + T_c] + \underbrace{V_{ub}V_{us}^*}_{\mathcal{O}(\lambda^4)} [P_u - P_t + T_u]$$

SM: expect: $S_{\phi K_S} - S_{\psi K}$ and $C_{\phi K_S} \lesssim 0.05$

NP: $S_{\phi K_S} \neq S_{\psi K}$ possible Expect different S_f for each $b \to s$ mode Depend on size & phase of SM and NP amplitude

NP could enter $S_{\psi K}$ mainly in mixing, while $S_{\phi K_S}$ through both mixing and decay

Interesting to pursue independent of present results — there is room left for NP

Status of $\sin 2\beta_{\rm eff}$ measurements

Largest hint of deviations from SM: $S_{\eta'K_S}\left(2\sigma\right)$ and $S_{\psi K} - \langle S_{b \to s} \rangle = 0.18 \pm 0.06 \ (3\sigma)$

(Averaging somewhat questionable; although in QCDF the mode-dependent shifts are mostly up)

Status of $\sin 2\beta_{\rm eff}$ measurements

Dominant process	f_{CP}	SM allowed range of * $ -\eta_{f_{CP}}S_{f_{CP}}-\sin2eta $	$\sin 2eta_{ ext{eff}}$	C_f
$b \rightarrow c\bar{c}s$	ψK_S	< 0.01	$+0.687 \pm 0.032$	$+0.016 \pm 0.046$
$b \to c\bar{c}d$	$\psi\pi^0$	~ 0.2	$+0.69 \pm 0.25$	-0.11 ± 0.20
	$D^{*+}D^{*-}$	~ 0.2	$+0.67 \pm 0.25$	$+0.09 \pm 0.12$
	D^+D^-	~ 0.2	$+0.29 \pm 0.63$	$+0.11 \pm 0.36$
$b \rightarrow s\bar{q}q$	ϕK^0	< 0.05	$+0.47 \pm 0.19$	-0.09 ± 0.14
	$\eta' K^0$	< 0.05	$+0.48 \pm 0.09$	-0.08 ± 0.07
	$K^+K^-K_S$	~ 0.15	$+0.51 \pm 0.17$	$+0.15 \pm 0.09$
	$K_SK_SK_S$	~ 0.15	$+0.61 \pm 0.23$	-0.31 ± 0.17
	$\pi^0 K_S$	~ 0.15	$+0.31 \pm 0.26$	-0.02 ± 0.13
	f^0K_S	~ 0.25	$+0.75 \pm 0.24$	$+0.06 \pm 0.21$
	ωK_S	~ 0.25	$+0.63 \pm 0.30$	-0.44 ± 0.23

^{*} My estimates of reasonable limits (strict bounds worse, model calculations better [Buchalla, Hiller, Nir, Raz; Beneke])

• No significant deviation from SM, still there is a lot to learn from more precise data In SM, both $|S_{\psi K} - S_{\eta' K_S}|$ and $|S_{\psi K} - S_{\phi K_S}| < 0.05$ [model estimates $\mathcal{O}(0.02)$]

Model building more interesting

• The present $S_{\eta'K_S}$ and $S_{\phi K_S}$ central values can be reasonably accommodated with NP (unlike an $\mathcal{O}(1)$ deviation from $S_{\psi K_S}$ two years ago)

• Other constraints: $\mathcal{B}(B \to X_s \gamma) = (3.5 \pm 0.3) \times 10^{-6}$ mainly constrains LR mass insertions

Now also $\mathcal{B}(B\to X_s\ell^+\ell^-)=(4.5\pm 1.0)\times 10^{-6}$ agrees with the SM at 20% level

Models must satisfy growing number of constraints simultaneously

New last year: α and γ

$$[\gamma = \arg(V_{ub}^*), \ \alpha \equiv \pi - \beta - \gamma]$$

 α measurements in $B \to \pi\pi$, $\rho\rho$, and $\rho\pi$

 γ in $B \to DK$: tree level, independent of NP

[The presently best α and γ measurements were not talked about before 2003]

lpha from $B o\pi\pi$

• Until \sim '97 the hope was to determine α from:

$$\frac{\Gamma(\overline{B}^{0}(t) \to \pi^{+}\pi^{-}) - \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})}{\Gamma(\overline{B}^{0}(t) \to \pi^{+}\pi^{-}) + \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})} = S\sin(\Delta m t) - C\cos(\Delta m t)$$

 $\arg \lambda_{\pi^+\pi^-} = (B\text{-mix} = 2\beta) + (\overline{A}/A = 2\gamma + \ldots) \Rightarrow \text{gives } \sin 2\alpha \text{ if } P/T \text{ were small}$ [expectation was $P/T \sim \mathcal{O}(\alpha_s/4\pi)$]

 $K\pi$ and $\pi\pi$ rates \Rightarrow comparable amplitudes in $B \to \pi\pi$ with different weak phases

Isospin analysis: 6 measurements determine 5 hadronic parameters + weak phase

Bose statistics $\Rightarrow \pi\pi$ in I=0,2

Triangle relations between $B^+,\,B^0\;(B^-,\,\overline{B}{}^0)$ decay amplitudes

α from $B \to \pi\pi$: Isospin analysis

• Tagged $B \to \pi^0 \pi^0$ rates are the hardest input

$$\mathcal{B}(B \to \pi^0 \pi^0) = (1.45 \pm 0.29) \times 10^{-6}$$

$$\frac{\Gamma(\overline{B} \to \pi^0 \pi^0) - \Gamma(B \to \pi^0 \pi^0)}{\Gamma(\overline{B} \to \pi^0 \pi^0) + \Gamma(B \to \pi^0 \pi^0)} = 0.28 \pm 0.39$$

Need lot more data to pin down $\Delta \alpha$ from isospin analysis... current bound:

$$|\Delta \alpha| < 39^{\circ} \ (90\% \ {\rm CL})$$

ullet Constraint on lpha weak (measurements 2.3σ apart):

$B \to \pi^+\pi^-$	$S_{\pi^+\pi^-}$	$C_{\pi^+\pi^-}$
BABAR (227m)	-0.30 ± 0.17	-0.09 ± 0.15
BELLE (275m)	-0.67 ± 0.17	-0.56 ± 0.13
average	-0.50 ± 0.12	-0.37 ± 0.11

$B \to \rho \rho$: the best α at present

- Lucky²: longitudinal polarization dominates (CP-even; could be even/odd mixed) Isospin analysis applies for each L, or in transversity basis for each $\sigma (=0, \parallel, \perp)$
- Small rate: $\mathcal{B}(B \to \rho^0 \rho^0) < 1.1 \times 10^{-6} \ (90\% \ \text{CL}) \Rightarrow$ small penguin pollution $\frac{\mathcal{B}(B \to \pi^0 \pi^0)}{\mathcal{B}(B \to \pi^+ \pi^0)} = 0.26 \pm 0.06 \ \text{vs.} \ \frac{\mathcal{B}(B \to \rho^0 \rho^0)}{\mathcal{B}(B \to \rho^+ \rho^0)} < 0.04 \ (90\% \ \text{CL})$

Isospin bound: $|\Delta \alpha| < 11^{\circ}$

$$S_{\rho^+\rho^-}$$
 yields: $\alpha=(96\pm13)^\circ$

Ultimately, more complicated than $\pi\pi$, I=1 possible due to finite Γ_{ρ} , giving $\mathcal{O}(\Gamma_{\rho}^2/m_{\rho}^2)$ effects [can be constrained]

[Falk, ZL, Nir, Quinn]

$B \to \rho \pi$: Dalitz plot analysis

• Two-body $B \to \rho^{\pm}\pi^{\mp}$: two pentagon relations from isospin; would need rates and CPV in all $\rho^{+}\pi^{-}$, $\rho^{-}\pi^{+}$, $\rho^{0}\pi^{0}$ modes to get α — hard!

Direct CPV:
$$\begin{cases} A_{\pi^-\rho^+} = -0.47^{+0.13}_{-0.14} \\ A_{\pi^+\rho^-} = -0.15 \pm 0.09 \end{cases}$$

 3.4σ from 0, challenges some models Interpretation for α model dependent

• Last year: Dalitz plot analysis of the interference regions in $B \to \pi^+\pi^-\pi^0$

Result:
$$\alpha = (113^{+27}_{-17} \pm 6)^{\circ}$$

Combined α measurements

• Sensitivity mainly from $S_{\rho^+\rho^-}$ and $\rho\pi$ Dalitz, $\pi\pi$ has small effect

Combined result: $\alpha = (99^{+12}_{-9})^{\circ}$ — better than indirect fit $92 \pm 15^{\circ}$ (w/o α and γ)

γ from $B^\pm o DK^\pm$

Tree level: interfere $b \to c \ (B^- \to D^0 K^-)$ and $b \to u \ (B^- \to \overline{D}{}^0 K^-)$ Need $D^0, \overline{D}{}^0 \to$ same final state; determine B and D decay amplitudes from data

Many variants depending on D decay: D_{CP} [GLW], DCS/CA [ADS], CS/CS [GLS]

Sensitivity crucially depends on: $r_B = |A(B^- \to \overline{D}{}^0K^-)/A(B^- \to D^0K^-)|$

• Best measurement now: $D^0, \overline{D}{}^0 \to K_S \pi^+ \pi^-$

Both amplitudes Cabibbo allowed; can integrate over regions in $m_{K\pi^+}-m_{K\pi^-}$ Dalitz plot

$$\gamma = \left(68^{+14}_{-15} \pm 13 \pm 11\right)^{\circ}$$
 [BELLE, 275 m]

$$\gamma = (67 \pm 28 \pm 13 \pm 11)^{\circ}$$
 [BABAR, 227 m]

• Need more data to determine γ more precisely (and settle value of r_B)

Overconstraining the CKM matrix

ullet SM fit: lpha, eta determine ho, η nearly as precisely as all data combined

- New era: constraints from angles surpass the rest; will scale with statistics (By the time Δm_s is measured, α may be competitive for $|V_{td}|$ side)
- ϵ_K , Δm_d , Δm_s , $|V_{ub}|$, etc., can be used to overconstrain the SM and test NP Let's see how it works...

The "new" CKM fit

- Include measurements that give meaningful constraints and NOT theory limited
 - α from $B \to \rho \rho$ and $\rho \pi$ Dalitz
 - $2\beta + \gamma$ from $B \to D^{(*)\pm}\pi^{\mp}$

 $\Delta m_s = (17.9^{+10.5}_{-1.7} {}^{[+20.0]}_{[-2.8]}) \ \mathrm{ps}^{-1} \ \mathsf{at} \ 1\sigma \ [2\sigma]$

- γ from $B \to DK$ (with D Dalitz)
- $\cos 2\beta$ from ψK^* and $A_{\rm SL}$ (for NP)

Constraining NP in mixing: $\rho - \eta$ view

NP in mixing amplitude only, 3 imes 3 unitarity preserved: $M_{12}=M_{12}^{
m (SM)}\,r_d^2\,e^{2i heta_d}$

$$\Rightarrow \Delta m_B = r_d^2 \Delta m_B^{(\mathrm{SM})}$$
, $S_{\psi K} = \sin(2\beta + 2\theta_d)$, $S_{\rho\rho} = \sin(2\alpha - 2\theta_d)$, $\gamma(DK)$ unaffected

Constraining NP in mixing: $\rho - \eta$ view

NP in mixing amplitude only, 3×3 unitarity preserved: $M_{12} = M_{12}^{({
m SM})} \, r_d^2 \, e^{2i \theta_d}$

$$\Rightarrow \Delta m_B = r_d^2 \Delta m_B^{(\mathrm{SM})}$$
, $S_{\psi K} = \sin(2\beta + 2\theta_d)$, $S_{\rho\rho} = \sin(2\alpha - 2\theta_d)$, $\gamma(DK)$ unaffected

Only the SM region left even in the presence of NP in mixing

[Similar fits also by UTfit]

Constraining NP in mixing: $r_d^2 - \theta_d$ view

NP in mixing amplitude only, 3×3 unitarity preserved: $M_{12} = M_{12}^{(\mathrm{SM})} \, r_d^2 \, e^{2i\theta_d}$

$$\Rightarrow \Delta m_B = r_d^2 \Delta m_B^{(\mathrm{SM})}$$
, $S_{\psi K} = \sin(2\beta + 2\theta_d)$, $S_{\rho \rho} = \sin(2\alpha - 2\theta_d)$, $\gamma(DK)$ unaffected

• New data restrict r_d^2 , θ_d significantly for the first time — still plenty of room left

NP in mixing: $h_d - \sigma_d$ view

Previous fits: $|M_{12}/M_{12}^{\rm SM}|$ can only differ significantly from 1 if ${
m arg}(M_{12}/M_{12}^{\rm SM})\sim 0$

More transparent parameterization: $M_{12}=M_{12}^{(\mathrm{SM})}\,r_d^2\,e^{2i\theta_d}\equiv M_{12}^{(\mathrm{SM})}(1+h_d\,e^{2i\sigma_d})$

Modest NP contribution can still have arbitrary phase

[Agashe, Papucci, Perez, Pirjol, to appear]

• For $|h_d| < 0.2$, the phase σ_d is unconstrained; if $|h_d| < 0.4$, σ_d can take half of $(0, \pi)$

Intermediate summary

- \bullet $\sin 2\beta = 0.687 \pm 0.032$
 - \Rightarrow good overall consistency of SM, $\delta_{\rm CKM}$ is probably the dominant source of CPV in flavor changing processes
- $S_{\psi K} S_{\eta' K_S} = 0.21 \pm 0.10$ and $S_{\psi K} \langle S_{b \to s} \rangle = 0.18 \pm 0.06$
 - \Rightarrow Decreasing deviations from SM (same values with 5σ would still signal NP)
- \bullet $A_{K^-\pi^+} = -0.12 \pm 0.02$
 - \Rightarrow "B-superweak" excluded, sizable strong phases
- Measurements of $\alpha = \left(99^{+12}_{-9}\right)^{\circ}$ and $\gamma = \left(64^{+16}_{-13}\right)^{\circ}$
 - ⇒ Angles start to give tightest constraints
 - \Rightarrow First serious bounds on NP in $B-\overline{B}$ mixing; $\sim 30\%$ contributions still allowed

Theoretical developments

Significant steps toward a model independent theory of certain exclusive decays in the $m_B\gg \Lambda_{\rm QCD}$ limit

Factorization for $B \to M$ form factors for $q^2 \ll m_B^2$ and certain $B \to M_1 M_2$ nonleptonic decays

Determinations of $|V_{cb}|$ and $|V_{ub}|$

• Inclusive and exclusive $|V_{cb}|$ and $|V_{ub}|$ determinations rely on heavy quark expansions; theoretically cleanest is $|V_{cb}|_{\rm incl}$

$$\begin{split} \Gamma(B \to X_c \ell \bar{\nu}) &= \frac{G_F^2 |V_{cb}|^2}{192 \pi^3} \left(\frac{m_\Upsilon}{2}\right)^5 (0.534) \times \\ &\left[1 - 0.22 \left(\frac{\Lambda_{1S}}{500 \, \text{MeV}}\right) - 0.011 \left(\frac{\Lambda_{1S}}{500 \, \text{MeV}}\right)^2 - 0.052 \left(\frac{\lambda_1}{(500 \, \text{MeV})^2}\right) - 0.071 \left(\frac{\lambda_2}{(500 \, \text{MeV})^2}\right) \right. \\ &\left. - 0.006 \left(\frac{\lambda_1 \Lambda_{1S}}{(500 \, \text{MeV})^3}\right) + 0.011 \left(\frac{\lambda_2 \Lambda_{1S}}{(500 \, \text{MeV})^3}\right) - 0.006 \left(\frac{\rho_1}{(500 \, \text{MeV})^3}\right) + 0.008 \left(\frac{\rho_2}{(500 \, \text{MeV})^3}\right) \\ &+ 0.011 \left(\frac{T_1}{(500 \, \text{MeV})^3}\right) + 0.002 \left(\frac{T_2}{(500 \, \text{MeV})^3}\right) - 0.017 \left(\frac{T_3}{(500 \, \text{MeV})^3}\right) - 0.008 \left(\frac{T_4}{(500 \, \text{MeV})^3}\right) \\ &+ 0.096 \epsilon - 0.030 \epsilon_{\text{BLM}}^2 + 0.015 \epsilon \left(\frac{\Lambda_{1S}}{500 \, \text{MeV}}\right) + \dots \right] \end{split}$$

Corrections: $\mathcal{O}(\Lambda/m)$: $\sim 20\%$, $\mathcal{O}(\Lambda^2/m^2)$: $\sim 5\%$, $\mathcal{O}(\Lambda^3/m^3)$: $\sim 1-2\%$, $\mathcal{O}(\alpha_s)$: $\sim 10\%$, Unknown terms: < few %

Matrix elements determined from fits to many shape variables

• Error of $|V_{cb}|_{\rm incl} \sim 2\%!$ New small parameters complicate expansions for $|V_{ub}|_{\rm incl}$

Exclusive $b \rightarrow u$ decays

- ullet In the hands of LQCD, less constraints from heavy quark symmetry than in b o c
 - $-B \rightarrow \ell \bar{\nu}$: measures $f_B \times |V_{ub}|$ need f_B from lattice
 - $-B \rightarrow \pi \ell \bar{\nu}$: useful dispersive bounds on form factors
 - Ratios = 1 in heavy quark or chiral symmetry limit (+ study corrections)
- Deviations of "Grinstein-type double ratios" from unity are more suppressed:

$$\Rightarrow rac{f_B}{f_{B_s}} imes rac{f_{D_s}}{f_D}$$
 — lattice: double ratio $= 1$ within few $\%$

$$\Rightarrow \frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})} \text{ --- very clean... after 2010?}$$

$$\Rightarrow \frac{f^{(B\to\rho\ell\bar\nu)}}{f^{(B\to K^*\ell^+\ell^-)}} \times \frac{f^{(D\to K^*\ell\bar\nu)}}{f^{(D\to\rho\ell\bar\nu)}} \ \ \text{or} \ q^2 \ \text{spectra} \ \ --\text{accessible soon?} \qquad \text{[ZL, Wise; Grinstein, Pirjol]}$$

New CLEO-C $D \to \rho \ell \bar{\nu}$ data still consistent w/ no SU(3) breaking in form factors [ZL, Stewart, Wise] Could lattice do more to pin down the corrections?

One-page introduction to SCET

• Effective theory for processes involving energetic hadrons, $E\gg\Lambda$

[Bauer, Fleming, Luke, Pirjol, Stewart, + . . .]

Introduce distinct fields for relevant degrees of freedom, power counting in λ

_	modes	fields	$p = (+, -, \bot)$	p^2	SCET _I : $\lambda = \sqrt{\Lambda/E}$ — jets $(m{\sim}\Lambda E)$
	collinear	$\xi_{n,p}, A^{\mu}_{n,q}$	$H: \{\lambda^- \mid \lambda\}$	H:- \ \ -	
	soft	q_q, A_s^μ		$E^2\lambda^2$	$\mathbf{SCET}_{\mathrm{II}} : \lambda = \Lambda/E - \mathbf{hadrons} \ (m \sim \Lambda)$
	usoft	q_{us}, A^{μ}_{us}	$E(\lambda^2,\lambda^2,\lambda^2)$	$E^2\lambda^4$	$Match\;QCD\toSCET_\mathrm{I}\toSCET_\mathrm{II}$

• Can decouple ultrasoft gluons from collinear Lagrangian at leading order in λ

$$\xi_{n,p} = Y_n \, \xi_{n,p}^{(0)}$$
 $A_{n,q} = Y_n \, A_{n,q}^{(0)} \, Y_n^{\dagger}$ $Y_n = P \exp \left[ig \int_{-\infty}^x ds \, n \cdot A_{us}(ns) \right]$

Nonperturbative usoft effects made explicit through factors of Y_n in operators

New symmetries: collinear / soft gauge invariance

• Simplified / new ($B \to D\pi, \pi \ell \bar{\nu}$) proofs of factorization theorems

[Bauer, Pirjol, Stewart]

Semileptonic $B \to \pi, \rho$ form factors

Issues: endpoint singularities, Sudakov effects, etc.

At leading order in Λ/Q , to all orders in α_s , form factors for $q^2 \ll m_B^2$ written as $(Q=E,m_b;$ omit μ -dep's)

[Beneke & Feldmann; Bauer, Pirjol, Stewart; Becher, Hill, Lange, Neubert]

$$F(Q) = C_k(Q) \zeta_k(Q) + \frac{m_B f_B f_M}{4E^2} \int \! \mathrm{d}z \mathrm{d}x \mathrm{d}r_+ \, T(z,Q) \, J(z,x,r_+,Q) \, \phi_M(x) \phi_B(r_+)$$

Matrix elements of distinct $\int d^4x T \left[J^{(n)}(0) \mathcal{L}_{\xi q}^{(m)}(x) \right]$ terms (turn spectator $q_{us} \to \xi$)

Symmetries ⇒ nonfactorizable (1st) term obey form factor relations

[Charles et al.]

 $3 B \rightarrow P$ and $7 B \rightarrow V$ form factors related to 3 universal functions

• Relative size? SCET: 1st \sim 2nd QCDF: 2nd $\sim \alpha_s \times$ (1st) PQCD: 1st ~ 0

Some relations between semileptonic and nonleptonic decays can be insensitive to this, while other predictions may be sensitive (e.g., $A_{FB} = 0$ in $B \to K^* \ell^+ \ell^-$?)

$|V_{ub}|$ from $B o\pi\ellar u$

• Lattice is under control for large q^2 (small $|\vec{p}_{\pi}|$), experiment loses a lot of statistics

$$\frac{\mathrm{d}\Gamma(\bar{B}^{0} \to \pi^{+}\ell\bar{\nu})}{\mathrm{d}q^{2}} = \frac{G_{F}^{2}|\vec{p}_{\pi}|^{3}}{24\pi^{3}} |V_{ub}|^{2} |f_{+}(q^{2})|^{2}$$

Best would be to use the q^2 -dependent data and its correlation (both lattice and experiment) to get $|V_{ub}|$, reducing role of model-dependent fits

• Dispersion relation and a few points for $f_+(q^2)$ give strong constraints on shape <code>[Boyd, Grinstein, Lebed]</code> $B \to \pi\pi$ using factorization constrains $|V_{ub}|f_+(0)$ <code>[Bauer et al.]</code>

• Can combine dispersive bounds with lattice and possibly $B \to \pi\pi$ [Fukunaga, Onogi; Arnesen *et al.*]

Tension between $\sin 2\beta$ and $|V_{ub}|$?

lacktriangle SM fit favors slightly smaller $|V_{ub}|$ than inclusive determination, or larger $\sin 2eta$

Inclusive average (error underestimated?)

$$|V_{ub}|_{\rm incl}^{\rm (HFAG)} = (4.38 \pm 0.19 \pm 0.27) \times 10^{-3}$$

Lattice $\pi\ell\nu$ average [HPQCD & FNAL from Stewart @ LP'05] $|V_{ub}| = (4.1 \pm 0.3^{+0.7}_{-0.4}) \times 10^{-3}$

Depends on whether only $q^2 > 16 \,\mathrm{GeV}^2$ is used

Light-cone SR [Ball, Zwicky; Braun *et al.*, Colangelo, Khodjamirian] $|V_{ub}| = (3.3 \pm 0.3^{+0.5}_{-0.4}) \times 10^{-3}$

Statistical fluctuations? Problem with inclusive? New physics?

Precise $|V_{ub}|$ crucial to be sensitive to small NP entering $\sin 2\beta$ via mixing

• To sort this out, need precise and model independent f_B and $B \to \pi$ form factor

Chasing $|V_{td}/V_{ts}|$: $B o ho \gamma$ vs. $B o K^* \gamma$

Factorization formula: $\langle V\gamma|\mathcal{H}|B\rangle=T_i^{\mathrm{I}}F_V+\int\mathrm{d}x\,\mathrm{d}k\,T_i^{\mathrm{II}}(x,k)\,\phi_B(k)\,\phi_V(x)+\ldots$

[Bosch, Buchalla; Beneke, Feldman, Seidel; Ali, Lunghi, Parkhomenko]

$$rac{\mathcal{B}(B^0
ightarrow
ho^0 \gamma)}{\mathcal{B}(B^0
ightarrow K^{*0} \gamma)} = rac{1}{2} \left| rac{V_{td}}{V_{ts}}
ight|^2 \xi^{-2} (1 + {\sf tiny})$$

No weak annihilation in B^0 , cleaner than B^{\pm}

$$SU(3)$$
 breaking: $\xi=1.2\pm0.1$ (CKM '05) [Ball, Zwicky; Becirevic; Mescia]

Conservative? $\xi-1$ is model dependent $\sigma(\xi)=0.2$ doubles error estimate Could LQCD help more?

ullet Mild indication that Δm_s might not be right at the current lower limit?

B ightarrow au u might also precede Δm_s

• Δm_s is not the only way to eliminate the f_B error in Δm_d ; f_B cancels in $\Gamma(B \to \tau \nu)/\Delta m_d$

If no exp. errors: determine $|V_{ub}/V_{td}|$ independent of f_B (left with B_d ; ellipse for fixed V_{cb} , V_{ts})

If f_B is known: get two circles that intersect at $\alpha \sim 100^{\circ} \Rightarrow$ powerful constraints

• Nailing down f_B will remain essential

Recall: Δm_s remains important to constrain NP entering B_s and B_d mixing differently (not just to determine $|V_{td}/V_{ts}|$)

Shown are 1 and 2σ contours with $f_B=216\pm9\pm21\,\mathrm{MeV}$ [HPQCD]

 $(B \to \tau \nu \text{ usually quoted as upper bounds})$

• Error of $\Gamma(B \to \tau \nu)$ will improve incrementally (precise only at a super B factory) Δm_s will be instantly accurate when measured

Photon polarization in $B o K^* \gamma$

SM predicts $\mathcal{B}(B \to X_s \gamma)$ correctly to $\sim 10\%$; rate does not distinguish $b \to s \gamma_{L,R}$

SM:
$$O_7 \sim \bar{s} \, \sigma^{\mu\nu} F_{\mu\nu} (m_b P_R + m_s P_L) b$$
, therefore mainly $b \to s_L$

Photon must be left-handed to conserve J_z along decay axis

Inclusive $B \to X_s \gamma$

Exclusive $B \to K^* \gamma$

Assumption: 2-body decay

Does not apply for $b \rightarrow s\gamma g$

... quark model (s_L implies $J_z^{K^*} = -1$)

... higher K^* Fock states

Only measurement so far; had been expected to give $S_{K^*\gamma} = -2 (m_s/m_b) \sin 2\beta$ [Atwood, Gronau, Soni]

$$\frac{\Gamma[\overline{B}^0(t) \to K^*\gamma] - \Gamma[B^0(t) \to K^*\gamma]}{\Gamma[\overline{B}^0(t) \to K^*\gamma] + \Gamma[B^0(t) \to K^*\gamma]} = S_{K^*\gamma} \sin(\Delta m \, t) - C_{K^*\gamma} \cos(\Delta m \, t)$$

• What is the SM prediction? What limits the sensitivity to new physics?

Right-handed photons in the SM

Dominant source of "wrong-helicity" photons in the SM is O₂

[Grinstein, Grossman, ZL, Pirjol]

Equal $b \to s\gamma_L$, $s\gamma_R$ rates at $\mathcal{O}(\alpha_s)$; calculated to $\mathcal{O}(\alpha_s^2\beta_0)$

Inclusively only rates are calculable: $\Gamma_{22}^{(brem)}/\Gamma_0 \simeq 0.025$

Suggests: $A(b \rightarrow s\gamma_R)/A(b \rightarrow s\gamma_L) \sim \sqrt{0.025/2} = 0.11$

• Exclusive $B \to K^* \gamma$: factorizable part contains an operator that could contribute at leading order in $\Lambda_{\rm QCD}/m_b$, but its $B \to K^* \gamma$ matrix element vanishes

Subleading order: several contributions to $\overline B{}^0 o \overline K{}^{0*}\gamma_R$, no complete study yet

We estimate:
$$\frac{A(\overline{B}^0 o \overline{K}^{0*}\gamma_R)}{A(\overline{B}^0 o \overline{K}^{0*}\gamma_L)} = \mathcal{O}\bigg(\frac{C_2}{3C_7}\frac{\Lambda_{\mathrm{QCD}}}{m_b}\bigg) \sim 0.1$$

• Data: $S_{K^*\gamma} = -0.13 \pm 0.32$ — both the measurement and the theory can progress

Nonleptonic decays

Some motivations

Two hadrons in the final state are also a headache for us, just like for you

Lot at stake, even if precision is worse

Many observables sensitive to NP — can we disentangle from hadronic physics?

- $B \to \pi\pi, K\pi$ branching ratios and CP asymmetries (related to α, γ in SM)
- Polarization in charmless $B \rightarrow VV$ decays
- First derive correct expansion in $m_b \gg \Lambda_{\rm QCD}$ limit, then worry about predictions
 - Need to test accuracy of expansion (even in $B \to \pi\pi$, $|\vec{p}_q| \sim 1 \, {\rm GeV}$)
 - Sometimes model dependent additional inputs needed

$B o D^{(*)} \pi$ decays in SCET

• Decays to π^{\pm} : proven that $A \propto \mathcal{F}^{B \to D} f_{\pi}$ is the leading order prediction Also holds in large N_c , works at 5-10% level, need precise data to test mechanism

$$B^- \to D^0 \pi^-$$
$$\overline{B}^0 \to D^0 \pi^0$$

$$\overline{B}^0 \to D^+ \pi^ \overline{B}^0 \to D^0 \pi^0$$

$$\mathcal{O}(\Lambda_{ ext{QCD}}/Q)$$

$$Q = \{E_{\pi}, m_{b,c}\}$$

Predictions: $\frac{\mathcal{B}(B^- \to D^{(*)0}\pi^-)}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\pi^-)} = 1 + \mathcal{O}(\Lambda_{\rm QCD}/Q)$,

data:
$$\sim 1.8 \pm 0.2$$
 (also for ρ) $\Rightarrow \mathcal{O}(30\%)$ power corrections

[Beneke, Buchalla, Neubert, Sachrajda; Bauer, Pirjol, Stewart]

$$rac{\mathcal{B}(\overline{B}^0 o D^0\pi^0)}{\mathcal{B}(\overline{B}^0 o D^{*0}\pi^0)} = 1 + \mathcal{O}(\Lambda_{
m QCD}/Q)\,,$$

data:
$$\sim 1.1 \pm 0.25$$

Unforeseen before SCET

[Mantry, Pirjol, Stewart]

SCET:

Color suppressed $B o D^{(*)0} \pi^0$ decays

• Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}_{\xi q}^{(1)},\mathcal{L}_{\xi q}^{(1)}\}$ [Mantry, Pirjol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

Color suppressed $B o D^{(*)0} \pi^0$ decays

Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}^{(1)}_{\xi q},\mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Pirjol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

Not your garden variety factorization formula... $S^{(i)}(k_1^+,k_2^+)$ know about n

$$S^{(0)}(k_1^+, k_2^+) = \frac{\langle D^0(v') | (\bar{h}_{v'}^{(c)} S) \not n P_L(S^\dagger h_v^{(b)}) (\bar{d}S)_{k_1^+} \not n P_L(S^\dagger u)_{k_2^+} | \bar{B}^0(v) \rangle}{\sqrt{m_B m_D}}$$

Separates scales, allows to use HQS without $E_\pi/m_c=\mathcal{O}(1)$ corrections

$$(i = 0, 8 \text{ above})$$

Color suppressed $B o D^{(*)0} \pi^0$ decays

Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}^{(1)}_{\xi q},\mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Pirjol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} T^{(i)}(z) J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

- Patios: the $\triangle = 1$ relations follow from naive factorization and heavy quark symmetry
 - The = 1 relations do not a prediction of SCET not foreseen by model calculations

Also predict equal strong phases between amplitudes to $D^{(*)}\pi$ in I=1/2 and 3/2

Data: $\delta(D\pi) = (30 \pm 5)^{\circ}$, $\delta(D^*\pi) = (31 \pm 5)^{\circ}$

Λ_b and B_s decays

• CDF measured in 2003: $\Gamma(\Lambda_b \to \Lambda_c^+ \pi^-)/\Gamma(\overline{B}{}^0 \to D^+ \pi^-) \approx 2$

Factorization does not follow from large N_c , but holds at leading order in $\Lambda_{\rm QCD}/Q$

$$\frac{\Gamma(\Lambda_b \to \Lambda_c \pi^-)}{\Gamma(\overline{B}{}^0 \to D^{(*)} + \pi^-)} \simeq 1.8 \left(\frac{\zeta(w_{\rm max}^{\Lambda})}{\xi(w_{\rm max}^{D^{(*)}})}\right)^2 \qquad \text{[Leibovich, ZL, Stewart, Wise]}$$

Isgur-Wise functions may be expected to be comparable

Lattice could nail this

• $B_s \to D_s \pi$ is pure tree, can help to determine relative size of E vs. C

[CDF '03: $\mathcal{B}(B_s \to D_s^- \pi^+)/\mathcal{B}(B^0 \to D^- \pi^+) \simeq 1.35 \pm 0.43$ (using $f_s/f_d = 0.26 \pm 0.03$)]

Lattice could help: Factorization relates tree amplitudes, need SU(3) breaking in $B_s \to D_s \ell \bar{\nu}$ vs. $B \to D \ell \bar{\nu}$ form factors from exp. or lattice

More complicated: $\Lambda_b \to \Sigma_c \pi$

Recall quantum numbers:

$$\Sigma_c = \Sigma_c(2455)$$
, $\Sigma_c^* = \Sigma_c(2520)$

multiplets	s_l	$I(J^P)$
Λ_c	0	$0(\frac{1}{2}^+)$
Σ_c, Σ_c^*	1	$1(\frac{1}{2}^+), 1(\frac{3}{2}^+)$

• Can't address in naive factorization, since $\Lambda_b \to \Sigma_c$ form factor vanishes by isospin

 $\mathcal{O}(\Lambda_{\rm QCD}/Q)$

[Leibovich, ZL, Stewart, Wise]

• Prediction: $\frac{\Gamma(\Lambda_b \to \Sigma_c^* \pi)}{\Gamma(\Lambda_b \to \Sigma_c \pi)} = 2 + \mathcal{O}\big[\Lambda_{\rm QCD}/Q\,,\,\alpha_s(Q)\big] = \frac{\Gamma(\Lambda_b \to \Sigma_c^{*0} \rho^0)}{\Gamma(\Lambda_b \to \Sigma_c^0 \rho^0)}$

Can avoid π^0 's from $\Lambda_b \to \Sigma_c^{(*)0} \pi^0 \to \Lambda_c \pi^- \pi^0$ or $\Lambda_b \to \Sigma_c^{(*)+} \pi^- \to \Lambda_c \pi^0 \pi^-$

Charmless $B o M_1 M_2$ decays

Limited consensus about implications of the heavy quark limit

[Bauer, Pirjol, Rothstein, Stewart; Chay, Kim; Beneke, Buchalla, Neubert, Sachrajda]

$$egin{aligned} A &= A_{car{c}} + Nigg[f_{M_2}\,\zeta^{BM_1}\!\int\!\mathrm{d} u\,T_{2\zeta}(u)\,\phi_{M_2}(u) \ &+ f_{M_2}\!\int\!\mathrm{d} z\mathrm{d} u\,T_{2J}(u,z)\,\zeta_J^{BM_1}(z)\,\phi_{M_2}(u) + (1\leftrightarrow2)igg] \end{aligned}$$

- $\zeta_J^{BM_1} = \int dx dk_+ J(z, x, k_+) \phi_{M_1}(x) \phi_B(k_+)$ also appears in $B \to M_1$ form factors \Rightarrow Relations to semileptonic decays do not require expansion in $\alpha_s(\sqrt{\Lambda Q})$
- Charm penguins: suppression of long distance part argued, not proven Lore: "long distance charm loops", "charming penguins", " $D\overline{D}$ rescattering" are the same (unknown) term; may yield strong phases and other surprises
- SCET: fit both ζ 's and ζ_J 's, calculate T's; QCDF: fit ζ 's, calculate factorizable (1st) terms perturbatively; PQCD: 1st line dominates and depends on k_{\perp}

$B o \pi\pi$ amplitudes

$$A_{+-} = -\lambda_u (T + P_u) - \lambda_c P_c - \lambda_t P_t = e^{-i\gamma} T_{\pi\pi} - P_{\pi\pi}$$

$$\sqrt{2}A_{00} = \lambda_u (-C + P_u) + \lambda_c P_c + \lambda_t P_t = e^{-i\gamma} C_{\pi\pi} + P_{\pi\pi}$$

$$\sqrt{2}A_{-0} = -\lambda_u (T + C) = e^{-i\gamma} (T_{\pi\pi} + C_{\pi\pi})$$

Alternatively, eliminate λ_t terms, then $e^{i\beta}P'_{\pi\pi}$

Diagrammatic language can be justified in SCET at leading order

- We know: $arg(T/C) = \mathcal{O}(\alpha_s, \Lambda/m_b)$, P_u is calculable (small),
 - $-P_t$: "chirally enhanced" power correction in QCDF (treated like others by BPRS)
 - P_c : treated as $\mathcal{O}(1)$ in SCET (argued to be small by BBNS)
- Isospin analysis: 6 observables determine weak phase + 5 hadronic parameters $\mathcal{B}(B \to \pi^0 \pi^0)$ is large, so $\Delta \alpha$ can be large, but $C_{\pi^0 \pi^0}$ is hard to measure
- Can we use the theory constraint to determine α without $C_{\pi^0\pi^0}$?

Phenomenology of $B o \pi\pi$

Imposing a constraint on either $\epsilon \equiv {\rm Im}(C_{\pi\pi}/T_{\pi\pi})$ or $\tau \equiv {\rm arg}[T_{\pi\pi}/(C_{\pi\pi}+T_{\pi\pi})]$ mixes "tree" and "penguin" amplitudes [expect $\epsilon, \tau = \mathcal{O}(\alpha_s, \Lambda/m_b)$]

For $\alpha \sim 90^{\circ}$, $\epsilon \sim 0.2 \leftrightarrow \tau \sim 5^{\circ}$ $\epsilon \sim 0.4 \leftrightarrow \tau \sim 10^{\circ}$

For a given τ , theo and exp errors highly correlated

- CKM fit \Rightarrow unexpectedly large au (2σ)
 - large power corrections to T, C?
 - large up penguins?
 - large weak annihilation?

May be more applicable to $B \to \rho \rho$

Few comments

• More work & data needed to understand the expansions Why some predictions work at $\lesssim 10\%$ level, while others receive $\sim 30\%$ corrections Clarify role of charming penguins, chirally enhanced terms, annihilation, etc. We have the tools to try to address the questions

Where can lattice help?

- Semileptonic form factors (precision, include ρ and K^* , larger recoil)
- Light cone distribution functions of heavy and light mesons
- -SU(3) breaking in form factors and distribution functions
- Probably more remote: nonleptonic decays, nonlocal matrix elements e.g., large $B\to\pi^0\pi^0$ rate in SCET accommodated by $\langle k_+^{-1}\rangle_B=\int\!\mathrm{d}k_+\,\phi_B(k_+)/k_+$

The future

Theoretical limitations (continuum methods)

Many interesting decay modes will not be theory limited for a long time

Measurement (in SM)	Theoretical limit	Present error
$B \to \psi K_S \ (\beta)$	$\sim 0.2^{\circ}$	1.6°
$B \rightarrow \phi K_S, \ \eta^{(\prime)} K_S, \ (\beta)$	$\sim 2^{\circ}$	$\sim 10^{\circ}$
$B \to \pi\pi, \ \rho\rho, \ \rho\pi \ (\alpha)$	$\sim 1^{\circ}$	$\sim 15^{\circ}$
$B \to DK \ (\gamma)$	$\ll 1^{\circ}$	$\sim 25^{\circ}$
$B_s \to \psi \phi \ (\beta_s)$	$\sim 0.2^{\circ}$	
$B_s \to D_s K \ (\gamma - 2\beta_s)$	$\ll 1^{\circ}$	_
$ V_{cb} $	~ 1%	~ 3%
$ V_{ub} $	$\sim 5\%$	$\sim 15\%$
$B \to X \ell^+ \ell^-$	$\sim 5\%$	$\sim 20\%$
$B \to K^{(*)} \nu \bar{\nu}$	$\sim 5\%$	
$K^+ o \pi^+ u \bar{ u}$	$\sim 5\%$	$\sim 70\%$
$K_L o \pi^0 u ar{ u}$	< 1%	

It would require breakthroughs to go significantly below these theory limits

Outlook

If there are new particles at TeV scale, new flavor physics could show up any time

Belle & Babar data sets continue to double every ~ 2 years, will reach $\sim 1000\,{\rm fb^{-1}}$ each in a few years; $B\to J/\psi K_S$ was a well-defined target

Goal for further flavor physics experiments:

If NP is seen in flavor physics: study it in as many different operators as possible If NP is not seen in flavor physics: achieve what's theoretically possible

Even in latter case, powerful constraints on model building in the LHC era

• The program as a whole is a lot more interesting than any single measurement

Conclusions

- Much more is known about the flavor sector and CPV than few years ago
 CKM phase is probably the dominant source of CPV in flavor changing processes
- Deviations from SM in B_d mixing, $b \to s$ and even in $b \to d$ decays are constrained
- New era: new set of measurements are becoming more precise than old ones;
 existing data could have shown NP, lot more is needed to achieve theoretical limits
- The point is not just to measure magnitudes and phases of CKM elements (or ρ , η and α , β , γ), but to probe the flavor sector by overconstraining it in as many ways as possible (rare decays, correlations)
- Many processes give clean information on short distance physics, and there is progress toward model independently understanding more observables
 Lattice QCD is important; in some cases the only way to make progress

Thanks

To the organizers for the invitation, and for looking after our needs

• To A. Höcker, H. Lacker, Y. Nir, G. Perez, and I. Stewart for helpful discussions

Additional Topics

Further interesting CPV modes

B ightarrow ho ho vs. $\pi \pi$ isospin analysis

• Due to $\Gamma_{\rho} \neq 0$, $\rho \rho$ in I=1 possible, even for $\sigma=0$

[Falk, ZL, Nir, Quinn]

Can have antisymmetric dependence on both the two ρ mesons' masses and on their isospin indices $\Rightarrow I = 1$ ($m_i = \text{mass of a pion pair}$; B = Breit-Wigner)

$$A \sim B(m_1)B(m_2) \frac{1}{2} \Big[f(m_1, m_2) \rho^+(m_1) \rho^-(m_2) + f(m_2, m_1) \rho^+(m_2) \rho^-(m_1) \Big]$$

$$= B(m_1)B(m_2) \frac{1}{4} \Big\{ \Big[f(m_1, m_2) + f(m_2, m_1) \Big] \underbrace{\left[\rho^+(m_1) \rho^-(m_2) + \rho^+(m_2) \rho^-(m_1) \right]}_{I=0,2} + \Big[f(m_1, m_2) - f(m_2, m_1) \Big] \underbrace{\left[\rho^+(m_1) \rho^-(m_2) - \rho^+(m_2) \rho^-(m_1) \right]}_{I=1} \Big\}$$

If Γ_{ρ} vanished, then $m_1=m_2$ and I=1 part is absent

E.g., no symmetry in factorization: $f(m_{\rho^-},m_{\rho^+})\sim f_{\rho}(m_{\rho^+})\,F^{B\to\rho}(m_{\rho^-})$

• Cannot rule out $\mathcal{O}(\Gamma_{\rho}/m_{\rho})$ contributions; no interference $\Rightarrow \mathcal{O}(\Gamma_{\rho}^2/m_{\rho}^2)$ effects Can ultimately constrain these using data

CPV in neutral meson mixing

CPV in mixing and decay: typically sizable hadronic uncertainties

Flavor eigenstates: $|B^0\rangle = |\overline{b}\,d\rangle, |\overline{B}^0\rangle = |b\,\overline{d}\rangle$

$$i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right) \begin{pmatrix} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{pmatrix}$$

Mass eigenstates: $|B_{L,H}\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle$

• CPV in mixing: Mass eigenstates $\neq CP$ eigenstates $(|q/p| \neq 1 \text{ and } \langle B_H | B_L \rangle \neq 0)$

Best limit from semileptonic asymmetry (4Re ϵ)

[NLO: Beneke et al.; Ciuchini et al.]

$$A_{\rm SL} = \frac{\Gamma[\overline{B}^{0}(t) \to \ell^{+}X] - \Gamma[B^{0}(t) \to \ell^{-}X]}{\Gamma[\overline{B}^{0}(t) \to \ell^{+}X] + \Gamma[B^{0}(t) \to \ell^{-}X]} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}} = (-0.0026 \pm 0.0067)$$

$$\Rightarrow |q/p| = 1.0013 \pm 0.0034$$

[dominated by BELLE]

Allowed range ≫ than SM region, but already sensitive to NP

[Laplace, ZL, Nir, Perez]

$$B_s
ightarrow \psi \phi$$
 and $B_s
ightarrow \psi \eta^{(\prime)}$

• Analog of $B \to \psi K_S$ in B_s decay — determines the phase between B_s mixing and $b \to c\bar{c}s$ decay, β_s , as cleanly as $\sin 2\beta$ from ψK_S

 β_s is a small $\mathcal{O}(\lambda^2)$ angle in one of the "squashed" unitarity triangles

$$\sin 2\beta_s = 0.0346^{+0.0026}_{-0.0020}$$

 $\psi\phi$ is a VV state, so the asymmetry is diluted by the CP-odd component $\psi\eta^{(\prime)}$, however, is pure CP-even

• Large asymmetry ($\sin 2\beta_s > 0.05$) would be clear sign of new physics

$$B_s o D_s^\pm K^\mp$$
 and $B^0 o D^{(*)\pm}\pi^\mp$

Single weak phase in each $B_s, \overline{B}_s \to D_s^{\pm} K^{\mp}$ decay \Rightarrow the 4 time dependent rates determine 2 amplitudes, strong, and weak phase (clean, although $|f\rangle \neq |f_{CP}\rangle$)

Four amplitudes:
$$\overline{B}_s \stackrel{A_1}{\to} D_s^+ K^- \quad (b \to c \overline{u} s)$$
, $\overline{B}_s \stackrel{A_2}{\to} K^+ D_s^- \quad (b \to u \overline{c} s)$

$$B_s \stackrel{A_1}{\to} D_s^- K^+ \quad (\overline{b} \to \overline{c} u \overline{s}), \qquad B_s \stackrel{A_2}{\to} K^- D_s^+ \quad (\overline{b} \to \overline{u} c \overline{s})$$

$$\overline{A}_{D_s^+ K^-} = \frac{A_1}{A_2} \left(\frac{V_{cb} V_{us}^*}{V_{ub}^* V_{cs}} \right), \qquad \overline{A}_{D_s^- K^+} = \frac{A_2}{A_1} \left(\frac{V_{ub} V_{cs}^*}{V_{cb}^* V_{us}} \right)$$

Magnitudes and relative strong phase of A_1 and A_2 drop out if four time dependent rates are measured \Rightarrow no hadronic uncertainty:

$$\lambda_{D_s^+ K^-} \lambda_{D_s^- K^+} = \left(\frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*}\right)^2 \left(\frac{V_{cb} V_{us}^*}{V_{ub}^* V_{cs}}\right) \left(\frac{V_{ub} V_{cs}^*}{V_{cb}^* V_{us}}\right) = e^{-2i(\gamma - 2\beta_s - \beta_K)}$$

• Similarly, $B_d \to D^{(*)\pm}\pi^{\mp}$ determines $\gamma + 2\beta$, since $\lambda_{D^+\pi^-}\lambda_{D^-\pi^+} = e^{-2i(\gamma+2\beta)}$... ratio of amplitudes $\mathcal{O}(\lambda^2) \Rightarrow$ small asymmetries (and tag side interference)

A near future (& personal) best buy list

- β : reduce error in $B \to \phi K_S$, $\eta' K_S$, $K^+ K^- K_S$ (and $D^{(*)} D^{(*)}$) modes
- α : refine $\rho\rho$ (search for $\rho^0\rho^0$); $\pi\pi$ (improve C_{00}); $\rho\pi$ Dalitz
- γ : pursue all approaches, impressive start
- β_s : is CPV in $B_s \to \psi \phi$ small?
- $|V_{td}/V_{ts}|$: B_s mixing (Tevatron may still have a chance)
- Rare decays: $B \to X_s \gamma$ near theory limited; $B \to X_s \ell^+ \ell^-$ is becoming comparably precise
- $|V_{ub}|$: reaching $\lesssim 10\%$ will be very significant (a Babar/Belle measurement that may survive LHCB)
- Pursue $B \to \ell \nu$, search for "null observables", $a_{CP}(b \to s\gamma)$, etc., for enhancement of $B_{(s)} \to \ell^+ \ell^-$, etc.

(apologies if your favorite decay omitted!)

More slides removed

Δm_K , ϵ_K are built in NP models since 70's

If tree-level exchange of a heavy gauge boson was responsible for a significant fraction of the measured value of ϵ_K

Similarly, from $B^0 - \overline{B}{}^0$ mixing: $M_X \sim g \times 3 \cdot 10^2 \text{ TeV}$

New particles at TeV scale can have large contributions in loops $[g \sim \mathcal{O}(10^{-2})]$ Pattern of deviations/agreements with SM may distinguish between models

$K^0 - \overline{K}{}^0$ mixing and supersymmetry

•
$$\frac{(\Delta m_K)^{\text{SUSY}}}{(\Delta m_K)^{\text{EXP}}} \sim 10^4 \left(\frac{1 \text{ TeV}}{\tilde{m}}\right)^2 \left(\frac{\Delta \tilde{m}_{12}^2}{\tilde{m}^2}\right)^2 \text{Re}\left[(K_L^d)_{12}(K_R^d)_{12}\right]$$

 $K^d_{L(R)}$: mixing in gluino couplings to left-(right-)handed down quarks and squarks

Constraint from ϵ_K : replace $10^4 \, \text{Re} \big[(K_L^d)_{12} (K_R^d)_{12} \big]$ with $\sim 10^6 \, \text{Im} \big[(K_L^d)_{12} (K_R^d)_{12} \big]$

- Solutions to supersymmetric flavor problems:
 - (i) Heavy squarks: $\tilde{m} \gg 1 \, \mathrm{TeV}$
 - (ii) Universality: $\Delta m_{\tilde{Q},\tilde{D}}^2 \ll \tilde{m}^2$ (GMSB)
 - (iii) Alignment: $|(K_{L,R}^d)_{12}| \ll 1$ (Horizontal symmetry)

The CP problems ($\epsilon_K^{(\prime)}$, EDM's) are alleviated if relevant CPV phases $\ll 1$

With many measurements, we can try to distinguish between models

Precision tests with Kaons

• CPV in K system is at the right level (ϵ_K accommodated with $\mathcal{O}(1)$ CKM phase)

Hadronic uncertainties preclude precision tests (ϵ_K' notoriously hard to calculate)

• $K \to \pi \nu \overline{\nu}$: Theoretically clean, but rates small $\mathcal{B} \sim 10^{-10} (K^{\pm}), 10^{-11} (K_L)$

$$\mathcal{A} \propto \begin{cases} (\lambda^5 \, m_t^2) + i (\lambda^5 \, m_t^2) & t \colon \mathsf{CKM} \ \mathsf{suppressed} \end{cases} \underbrace{ \begin{matrix} W \\ (\lambda \, m_c^2) + i (\lambda^5 \, m_c^2) \end{matrix}}_{u \colon \mathsf{GIM} \ \mathsf{suppressed}} \underbrace{ \begin{matrix} W \\ v \end{matrix}}_{u,c,t} \underbrace{ \begin{matrix} u,c,t \end{matrix}}_{u,c,t} \underbrace{ \begin{matrix} u,c,t \end{matrix}}_{v} \underbrace{$$

So far three events observed: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$

Need much higher statistics to make definitive tests

The D meson system

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
 - Only meson where mixing is generated by down type quarks (SUSY: up squarks)
 - D mixing expected to be small in the SM, since it is DCS and vanishes in the flavor SU(3) symmetry limit
 - Involves only the first two generations: ${\sf CPV} > 10^{-3}$ would be unambiguously new physics
 - Only neutral meson where mixing has not been observed; possible hint:

$$y_{CP} = \frac{\Gamma(CP \text{ even}) - \Gamma(CP \text{ odd})}{\Gamma(CP \text{ even}) + \Gamma(CP \text{ odd})} = (0.9 \pm 0.4)\%$$
 [Babar, Belle, Cleo, Focus, E791]

• At the present level of sensitivity, CPV would be the only clean signal of NP Can lattice help to understand the SM prediction for $D-\overline{D}$ mixing?

Polarization in charmless B o VV

	1		
B decay	Longitudinal polarization fraction		
	BELLE	BABAR	
$\rho^- \rho^+$		$0.98^{+0.02}_{-0.03}$	
$\rho^0 \rho^+$	0.95 ± 0.11	$0.97^{+0.05}_{-0.08}$	
$\omega \rho^+$		$8_{-0.15}^{+0.12}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$0.96^{+0.06}_{-0.16}$	
1	$0.43^{+0.12}_{-0.11}$	0.79 ± 0.09	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.45 ± 0.05	0.52 ± 0.05	
ϕK^{*+}	0.52 ± 0.09	0.46 ± 0.12	

Chiral structure of SM and HQ limit claimed to imply

$$f_L = 1 - \mathcal{O}(1/m_b^2)$$
 [Kagan]

 ϕK^* : penguin dominated — NP reduces f_L ?

Proposed explanations:

c penguin [Bauer et al.]; penguin annihilation [Kagan]; rescattering [Colangelo et al.]; g fragment. [Hou, Nagashima]

Can it be made a clean signal of NP?

$B ightarrow \pi K$ rates and CP asymmetries

Sensitive to interference between $b \rightarrow s$ penguin and $b \rightarrow u$ tree (and possible NP)

Decay mode	CP averaged \mathcal{B} [$ imes10^{-6}$]	A_{CP}
$\overline{B^0} \to \pi^+ K^-$	18.2 ± 0.8	-0.11 ± 0.02
$B^- o \pi^0 K^-$	12.1 ± 0.8	$+0.04 \pm 0.04$
$B^- o \pi^- \overline{K}{}^0$	24.1 ± 1.3	-0.02 ± 0.03
$\overline B{}^0 o \pi^0 \overline K{}^0$	11.5 ± 1.0	$+0.00 \pm 0.16$

[Fleischer & Mannel, Neubert & Rosner; Lipkin; Buras & Fleischer; Yoshikawa; Gronau & Rosner; Buras et al.; ...]

$$R_c \equiv 2 \frac{\mathcal{B}(B^+ \to \pi^0 K^+) + \mathcal{B}(B^- \to \pi^0 K^-)}{\mathcal{B}(B^+ \to \pi^+ K^0) + \mathcal{B}(B^- \to \pi^- \overline{K}^0)} = 1.00 \pm 0.08$$

$$R_n \equiv \frac{1}{2} \frac{\mathcal{B}(B^0 \to \pi^- K^+) + \mathcal{B}(\overline{B}^0 \to \pi^+ K^-)}{\mathcal{B}(B^0 \to \pi^0 K^0) + \mathcal{B}(\overline{B}^0 \to \pi^0 \overline{K}^0)} = 0.79 \pm 0.08$$

$$R \equiv \frac{\mathcal{B}(B^0 \to \pi^- K^+) + \mathcal{B}(\overline{B}^0 \to \pi^+ K^-)}{\mathcal{B}(B^+ \to \pi^+ K^0) + \mathcal{B}(B^- \to \pi^- \overline{K}^0)} \frac{\tau_{B^{\pm}}}{\tau_{B^0}} = 0.82 \pm 0.06 \implies \text{FM bound} : \gamma < 75^{\circ} \text{ (95\% CL)}$$

$$R_L \equiv 2 \frac{\bar{\Gamma}(B^- \to \pi^0 K^-) + \bar{\Gamma}(\bar{B}^0 \to \pi^0 \bar{K}^0)}{\bar{\Gamma}(B^- \to \pi^- \bar{K}^0) + \bar{\Gamma}(\bar{B}^0 \to \pi^+ K^-)} = 1.12 \pm 0.07$$

• Pattern quite different than until 2004: R_c closer to 1, while R further from 1 No strong motivation for NP contribution to EW penguin, will be exciting to sort out

