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Why is flavor physics interesting?

® SM flavor problem: hierarchy of masses and mixing angles; why v’s are different

® Empirical evidence that SM is incomplete:
baryon asymmetry, dark matter, neutrino mass — at least two related to flavor

® NP flavor problem: TeV scale (hierarchy problem) <« flavor & CPV scale

d)? bd)? b5)?
€x: (‘12) = A>10*TeV, Amp: (AQ) — A>10°TeV, Amp,: (;2) — A>10%TeV

— Many extensions of the SM have new sources of C'P and flavor violation

— The observed baryon asymmetry of the Universe requires CPV beyond the SM
Not necessarily in flavor changing processes, nor necessarily in quark sector
Flavor suppression destroys KM baryogenesis; flavor matters for leptogenesis

® Flavor sector can be tested a lot better, many NP models have observable effects




The name of the game in the LHC era

® The question has been who sees NP first; once it's seen, how to understand it?
[Assume the LHC sees more than a Higgs ...]

® Concentrate on flavor physics topics where sensitivity can improve significantly
(by an order of magnitude, or at least a factor of many)

— Skip B — X,y rate, near “hitting the theory wall” (best bound on many models)
... Some tension between sin 25 and |V, [emphasized, e.g., by UTit]

... > 30 tension between LQCD fDS and D;_ — (T [Dobrescu & Kronfeld, arXiv:0803.0512]
— Many measurements with complementary sensitivity will improve a lot
— If all flavor effects < 1% in your favorite model (what is it?), I'll have little to say

® | ack of a “flavor theory” — there isn’t an obviously right / natural way for TeV-scale
NP to duplicate GIM and CKM suppressions
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SUSY contributions to K°—- K° mixing

. (Amg)SUSY o (1 T~eV>2 (Am12) Re[(K)10(K%)1s)

(Am g )eP m m?
K7 (g’

Constraint from ex: 10*Re[(K§)12(K%)12] = 10°Im|(K¢)12(K %) 12]

mixing in gluino couplings to left-(right-)handed down quarks and squarks

® Classes of models to suppress each factors
(i) Heavy squarks: m > 1TeV (e.g., split SUSY)
(ii) Universality: AmC~2 5 < m* (e.g., gauge mediation)
(iii) Alignment: |(K{ »)12] < 1 (e.g., horizontal symmetries)

® All SUSY models incorporate some of the above
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Where are we now?




The standard model CKM fit

® \ery impressive accomplishment

® The level of agreement between
the various measurements is often
misinterpreted

® Plausible TeV scale NP scenarios,
consistent with all low energy data,
w/o minimal flavor violation (MFV)

® CKM is inevitable; the question is
not if it’s correct, but is it sufficient?

1.5 s FEEEUM EREE | EErEEE e
I excluded area has CL = 0.95! & &
[ i 2 it

: %

L "y : N £
L ; ) |
1— % —
0.5 b
= o =
05— fam
-1~ ey
- m ' 5 {::::‘lftﬂgfiﬁnfges) ]
-1 5 E 1 S:JmTer:IEUGT { bt et B | | b EEe i | I | et b e | I | i | e | | | | | ]
-1 -0.5 0 0.5 1 1.5 2

p

~

ZL —p.4 /\I A
frreeeeer ||||




New Physics in FCNC processes

® Mixing
b W d b Xi _d
I i
Uy un OR = AND? DR
—— - -
d W b d % b

Simple parameterization for each neutral meson: My = MM (1 + he?')

® Penguin decays

7
br t SL

\\ * ’/‘/H'_
Many operators for b — s transitions — no simple parameterization of NP

® 1.4 :s only measurable in loops; likely also subleading couplings of new particles

® [solating modest NP contributions requires many measurements
Compare NP-independent (tree) with NP-dependent (loop) processes




Constraints on NP in BY) mixing

® Qverconstraining (“redundant”) measurements are crucial to bound new physics

1-C 1-CL
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Only the SM-like region is allowed, NP ~ SMis still allowed; Think “MFV”:
even in the presence of NP in mixing h ~ (47v/Afay.)?; IS Afav. > Apwsp?

® 10—20% non-SM contributions to most loop-mediated transitions are still possible
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B, mixing — Am

e B%-BY oscillate 25 times on average before they decay — challenge to measure

® Amg = (17.77+0.10 £ 0.07) ps
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[CDF, hep-ex/0609040]

Uncertainty o(Amyg) = 0.7% is already

smaller than o(Amg) = 0.8%
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B, mixing phase — sin 23,

® Next key measurement: time dep. C'P asymmetry in B; — ¢ (as clean as sin 23)

In the SM: 3, = arg(—V;,V,;/VesV3) = 0.019 = 0.001

. " . . 13 b .
® CDF & D@ disfavor large negative values: Testing a “squashed” UT:
0.10 L B A A L B |
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Averaging complicated due to different assumptions, hopefully fixed by summer
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The D meson system

® Complementary to K, B: CPV, FCNC both GIM & CKM suppressed =- tiny in SM

— 2007: signal for mixing > 5¢ [HFAG combination]

> | Beiing 2007 i CPV allowed I

B Only neson mixing generated by dOWﬂ-type quarks
(SUSY up—’[ype Squarks) | :::...

— SM suppression: Amp, AI'p $1072T, since doubly-
Cabibbo-suppressed and vanish in flavor SU(3) limit .

L BRIy
11-05005115225

— CPV (mixing or direct) > 10~ would be sign of NP o
(x = Am/T", y = AT'/2I")

AWh =
aaqa

— To do: Precise values of Am and AI'?
s CPV absent in mixing and decays? (not yet known if |¢/p| ~ 1)

® Particularly interesting for SUSY: Amp and Amyg = if first two squark doublets
are within LHC reach, they must be quasi-degenerate (alignment alone not viable)
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The old/new B — K puzzle

® Q: new physicsin CPVin B — Kn? V\§<d w0 o
v g

i b 5,d ke x
b . BB ’
AK+71'_ = —0097 :l: 0012 (P + T) o iod ud S u, d g,d a0, 7
Agtr0 = 0.05040.025 (P+T+C+A+P) ()5 s, Pew) o _wd
W/Z%<u b i
What is the reason for large difference? ai e W

At 0—Ag+.— = 0.147£0.028 (> 50) o
(Annihilation not shown) [Belle, Nature 452, 332 (2008)]

SCET / factorization predicts: arg (C'/T) = O(Aqcp/my) and A + P.,, small

O 1/m

® No similarly transparent problem with branching ratios, e.g., Lipkin sum rule looks
OK by now: , (B~ — n°K™) + T'(B° — «°K")
(B~ — 7~ K% +T'(BY — n+K~)

ZL —p. 10 ,/\|\9.|
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Forthcoming progress




Questions we hope to gain insights on

® The 3rd generation may differ from the 1st and 2nd by more than we know so far

Large top Yukawa = maybe non-universal coupling to EWSB and NP sector
Want to compare 3rd—1st and 3rd—2nd generation data with precision kaon data

® Many processes have different sensitivities to various NP scenarios

In SM: CPV only in flavor changing, interactions of quarks
With NP: possible in flavor diagonal processes, , In lepton sector

Does new physics give rise to operators forbidden (highly suppressed) in the SM?
E.g., Or = EU“VFILWPR[) VS. 0/7 = EOMVFILWPLZD

® One / many sources of CPV? Only in CC inter-
actions? Couples to up / down sector? 3rd/ all generations? AF =2and/or1?

ZL—p. 11 ”/”'\”|




sin 23.¢, o, v — large improvements possible

Cep=-Acp

0.8

0.6

0.4

0.2

® Eg., Syx — Sex =0.29+0.17; also for o & 7:
want ~ 10 x smaller error = ~ 100 x more data

sin(28™) =sin(2¢") vs C, = -ACPE

PRELIMINARY

| |
-04 -02 O 0.2 04 0.6 0.8ff "
sin(2p®") = sin(2¢;")

Contours give -2A(In L) = A)(2 =1, corresponding to 60.7% CL for 2 dof

1

® Need both LHCb and e*e~ super B factory
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Some LHCDb highlights / expectations

® After Am, measurement, large NP contribution to BY mixing is still allowed

180 180 -
160; After measurement of Amg 160r 1yr nominal LHCb, o(S¢¢) =0.03
140% 140%.
120% 120%
mlOOé mlOOé )
© Soé © soé -
60 Theory uncertainty r
3 1o allowed region ‘“’k
20— 20
O s L s s T A ‘hT‘o.‘4‘ 05 o6 07

S[zL, Papucci, Perez, hep-ph/0604112]
LHCb will probe B, sector at a level comparable to By

® B, — utp~ (o< tan® B), search for B; — ptu—, other rare / forbidden decays
® 10* % eventsin B — K™ ¢t¢—, B, — ¢, ... — test Dirac structure, BSM op’s
® ~ from B, — DT KT and other modes, o from pr (probably super-(KEK)B wins)

® Precisely measure 7y, — affects how much we trust AI'g, calculation, etc.

~
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Skipping 4 — ey and K — wvo

® . — ev: MEG (PSI) sensitivity to ~ 10713

uN — eN: PRISM/PRIME (J-PARC) sensitivity to ~ 10~17 (and maybe project-X)

® K — nwvv: Theoretically clean, but small rates B ~ 107 19(K*), 10~ (K})

(N> m?) +i(A\°m?) t: CKM suppressed w0 N e Tuet |
Aoc{ (Am?) +i(A\>m?) c: GIM suppressed u, ¢t g w! l w

o

So far 3 events: B(K+ — ntvp) = (1.477.39) x 10710 [BNL E787/E949]

(A Adep) u : GIM suppressed

14

Need more statistics for precision tests (rates also oc A* ~ |V |%)

Proposals: CERN NA62: K+ — ntvi ~ 60 events/yr, 2011-2013

FNAL: get about a thousand (few hundred) events with(out) project-X
KEK E391a & J-PARC E14
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Lepton flavor violation (in = decays)

® /, — eyVS. T — uy (few x 10_9) 6 39 6b o 6c
P
Simplest SU(5) expectation is i S 7
——-——— - R B T VA S ¢ WS (-

B(T — ,LL’y)/B(lu — 6’)/) ~3x103 ™ HE Na e b N, e -y . s

In many models best bet is i — ey, but this is model dependent, many exceptions

e . -1
e — 61_62_6;_ (feW > 10—10) VS. T — iy Super B sensitivity with 75 ab
Process Sensitivity
Consider operators: TroasF“Pur, (Fry*ur)(BrYaiis) B(r —puy) 2x107°
Suppression b opposite in two cases = model Sleseq) 2dl
pp y aem pp . D B(T _u MM,U) % 10—10
dependent which process gives the best sensitivity B(r — eee) 2% 10710
. .. . mu _ af mﬂ _ af
® ;. — evyand (g — 2),, operators are very similar: s FoasF e, — oapFp

If coefficients comparable, ;1 — ey gives much stronger bound
If (¢ —2),, is due to NP, large hierarchy of coefficients (= model building lessons)

ZL —p.15 ,/\\|\9.|



Rare (semi)leptonic FCNC B decays

® |mportant probes of new physics
— B — Xv: Best mys limits in 2HDM — in

SUSY many parameters

— B — X 0t~ or K®ete—: bsZ penguins, SUSY, right handed couplings

A crude guide (£ =-eor u)

Decay ~ SM rate physics examples
B — sv 3x107* |Vi|, HE, SUSY
B — v 1x10* 8| Vu|, HE
B — svv 4% 107° new physics
B —stt4~ 6x107° new physics
B, — 77t~ 1x107° U
B — sttr™ 5% 1077

B — uv 5x 1077
B, —» utum  4x107?
B—putp™ 2x1071

Replacing b — s by b — d costs a
factor ~20 (in SM); interesting to test
In both: rates, C'P asymmetries, etc.

In B — ¢l I, decays expect 10—20%
K*/p, and 5-10% K /7 (model dept)

Many interesting modes will first be
seen at LHCb and/or super-(KEK)B

Some of the theoretically cleanest
(v, T, inclusive) only possible at ete™

ZL —p. 16
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Flavor @ high pr




LHC is a top factory: 1 tt pair / sec

® Improve bounds on FCNC top decays by more than 10% (o, ~ 800 pb)

channel t — Zu(e) || t — ~yu(c) t — gu(c)

(3jets) | (4jets) | (combined)

upper limit on BR (L=10fb" 1) [ 34x10~* || 6.6 x 107° || 1.7x 1073 [ 25 x 1073 | 1.4x 103

upper limit on BR (L =100 b~ ) [[ 6.5 x 107° || 1.8 x 1077 || 5.0 x 107 | 8.0 x 10~* | 4.3 x 10~*
’ﬂ ﬂ [Carvalho, Castro, Onofre, Veloso, ATLAS note, 2005]

® Probe FCNC top decays down to a few x10~° (now >10"%; SM ~10~1%)

~
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FCNC top decays: t — c(u)~v, Z

® The NP involved in EWSB may induce new flavor violation observable in top decay
[recent review: Han, arXiv:0804.3178]

c,u U d,5
t b

cu d,s

~

c, U

w w

® Start from SU(2) X U(l) invariant Operators [Fox, ZL, Papucci, Perez, Schwartz, arXiv:0704.1482]
— EW precisiontests: T, U, V

— B decays: semileptonic decays (B — X.. (v, D™¥){p, miv), mixing (AF = 2)
rare decays: B — Xy, B — X {t¢~, B — py, B — {T{~

® Subtlety: tree-level measurements modified — whole CKM fit has to be redone

~
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Constraints on top FCNC operators

GE L GE L GEL Cfii} GEIH OEH Gfl R
direct bound 9.0 9.0 6.3 6.3 6.3 6.3 9.0
LHC sensitivity 0.20 0.20 0.15 0.15 0.15 0.15 0.20
B = X,y, Xolte | [-0.07, 0.036] [[__%%25 EE]'S';]] [~0.09,0.18] | [-0.12,0.24] | [-14,7] | [-10,19]
AF =2 0.07 0.014 0.14
semileptonic [0.3,1.7]
best bound 0.07 0.014 0.15 0.24 1T 6.3 9.0
A for C; = 1 (min) 3.9 TeV 8.3 TeV 2.6 TeV 2.0 TeV 0.8TeV | 04TeV |0.3TeV
B(t = cZ) (max) 7.1 x10~° 3.5 x10~7 34x107° | B4x107% |45x107? |56 x107%| 0.4
B(t — ¢v) (max) 1.8 x107% | 4.8x107% |23 x107%|3.2 x10~*
LHC Window Closed” Closed” Ajar Ajar Open Open Open

[Fox, ZL, Papucci, Perez, Schwartz, arXiv:0704.1482]
® B factory data constrain some of the operators beyond the LHC reach

® |f top FCNC seen, LHC & B factories together can probe the NP responsible for it

~
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Flavor effects at the TeV scale

® Questions: Does flavor matter? Can we access flavor at high pr?

® Some flavor aspects of LHC:
—-p=g+u.,d,s,cb,u,d,5, ¢ b— has flavor
— Hard to bound flavor properties of new particles (e.g., Z’ — bbvs. Z' — b5 ?)

— Little particle ID: b (displaced vertex), t (which py range?), and all the others

® What flavor data the LHC can give us:
— Spectrum (degeneracies)
— Information on some (dominant?) decay widths

— Production cross sections

~

ZL —p.20 /N




Minimal flavor violation (MFV)

® How strongly can effects of NP at scale Axp be (sensibly) suppressed?

® SM global flavor symmetry U(3)q x U(3),, x U(3)4 broken by Yukawa’s

Th=e o dil T I ~ 0 1 *
Ly ==Y/ iiqbuRj_Yc;j iz‘?bde ¢:<_1 0)¢

® MFV: Assume Y'’s are the only source of flavor and C'P violation (cannot demand

all higher dimension operators to be flavor invariant and contain only SM fields)
[Chivukula & Georgi ’87; Hall & Randall '90; D’Ambrosio, Giudice, Isidori, Strumia '02]

® CKM and GIM (m,) suppressions similar to SM; allows EFT-like analyses

Imposing MFV, best constraints come from:
B — X,y, B— 1v, B; — ptu~, Amp,, Qh?, g— 2, precision electroweak

® Even with MFV and TeV-scale NP, expect few % deviations from SM in B, D, K

® |n some scenarios high-pr LHC data may rule out MFV or make it more plausible

~
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Some MFV predictions

® Spectra: y,.q4.s. < 1, so there is an approximate SU(Z)Z symmetry

Indeed, in GMSB, the first two generation squarks are quasi-degenerate

® Mixing: Only source is CKM matrix

1 02 0

(LHC)
Vi = -02 1 o0
0o 0 1

= New particles decay to either 3rd or non-3rd generation quarks, but not to both

® How to test MFV at the LHC in specific models with an extended particle content
[E.g.: Grossman, Nir, Thaler, Volansky, Zupan, arXiv:0706.1845]

® Emerging non-MFV models w/ interesting flavor structure, consistent with all data

~
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Hitchhiker’s guide to recent flavor models

® Models with hierarchical fermion wave functions yield partial alignment of NP

flavor violation with Yukawas in down sector (NMFV, problems w/ ek )
[Agashe et al., hep-ph/0509117; Bona et al., arXiv:0707.0636]

Party in up sector? CPV in D mixing & decay, D — w/*¢~, FCNC t decays, etc.

e.g., RS [Agashe, Perez, Soni, hep-ph/0408134; Davidson, Isidori, Uhlig, arXiv:0711.3376; Csaki, Falkowski, Weiler, arXiv:0804.1954]

® Down-quark alignment 5D MFV # 4D MFV (more BSM in MFV than usual lore)

[Fitzpatrick, Perez, Randall, arXiv:0710.1869]

® Suppression from heavy Dirac-gauginos (gluinos) = OK with low energy observ-
ables (EK?), still plenty of hlgh-pT flavor violation [Kribs, Poppitz, Weiner, arXiv:0712.2039]

® Allow for modest subleading flavor-non-universal contributions in a natural way;

maybe easiest to discover in slepton flavor violation
[Feng et al., arXiv:0712.0674; Nomura, Papucci, Stolarski, arXiv:0712.2074]

® Expect more on lepton flavor models [Cirigliano et al., hep-ph/0507001: Chen, Yu, arXiv:0804.2503]

~
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Implications for mass reconstructions

® Flavor (i.e., generation) off-diagonal rates can be O(10%) and even more

E.Q.:

Table 2. Branching ratios (in %) of u-type squarks for the point specified in Table 1

Xic  Xit | Xoe X3t Xsc  Xat | Xie Xat | X8 Xib| X388  Xab
i, [ 47 18 | 52 96 [6x1077 0 0.02 0 [113 464 [2x1077 47
iz 196 11 | 04 175 |2x1072 0 |[6x107% 0 05 575 | 3x107* 29
fig | 73 37| 20 14 |6x107% 0 0.6 0 | 403 3.1 1 18.5
fig | 57 04 1.1 53 |4x10°? 5.7 0.6 13.2 | 229 131 0.6 8.0
Table 3. Branching ratios (in %) of d-type squarks for the point specified in Table 1
o S -di ' _ [ x¥s X% [ %8s xBb | x§s X% [ Xis X [ Xib Xt [ Xob gt [ mW-
Slzable Off dlagonal rates Stl” dy | 1.2 57 | 84 306]|2x10°2 15 |02 09 |[166 341] 06 0 0
. . do | 174 58 | 51 157 | 7x10°% 74 |03 092 | 97 19707 0 8.8
allowed, consistent with low di|147 217 [113 22 [5x107* 106 | 05 84 [221 36 |12 0 | 34
d ¢ ) | b ds | 1.7 05 | 205 6.9 0.1 09 | 1.2 13 (403 102 | 34 111 | 18
ner INCI. 0 — S
energy daata, inc 8 [E.g.: Hurth & Porod, hep-ph/0311075]
® Could complicate determination of sparticle masses from kinematical endpoints

in cascade decays — most LHC studies assume MFV, i.e., m3 = m3 # m3

~
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Final comments




Summary — low energy

® The SM flavor sector has been tested with impressive & increasing precision
KM phase is the dominant source of C'P violation in flavor changing processes

® Measurements probe scales > TeV; sensitivity limited by statistics, not theory
® New physics in most FCNC processes may still be 210% of the SM contributions

® Tests of 3-2 generation transitions will approach precision of 3-1, approaching 2-1
LHCDb will constrain B, sector at a level similar to By

® Sensitivity to lepton flavor violation will improve by 10—1000 in many channels

® |[f no NP is seen in flavor sector, similar constraints as LEP tests of gauge sector

~
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Summary — high energy

® The consistency of precision flavor measurements at E.y, ~ few GeV with the
SM poses problems for NP at Axp ~ few TeV

® |f new particles discovered, their flavor properties can teach us about > TeV NP:
masses (degeneracies), decay rates (flavor decomposition), cross sections

® | HC data may rule out MFV or make it more plausible (so can LHCb & super-B)

® Direct and indirect probes of NP:
— synergy in reconstructing the fundamental theory (distinguish between models)
— complementary coverage of param. space (subleading couplings, >TeV scales)

® Flavor physics will provide important clues to model building in the LHC era

~
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Spectacular track record

® Flavor and C'P violation are excellent probes of new physics

— (3-decay predicted neutrino (Pauli)
— Absence of K, — uu predicted charm (GIM)
— e predicted 3rd generation (KM)
— Amy predicted m. (GL)
— Amp predicted large m;
® |f there is NP at the TEV scale, it must have a special flavor and C'P structure

Did we misinterpret the fine-tuning problem? Will the LHC find just a SM Higgs?

® If Acpv > Agw: no observable effects in B decays = precise SM measurements

If Acpv ~ Agw: sizable effects possible = could get detailed information on NP
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Parameterization of NP in mixing

® Assume: (i) 3 x 3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

NP in mixing — two new param’s for each neutral meson:

SM .2 2i0, _—_ SM 210
easy to rel;tre to data easy to relz;cre to models

® Observables sensitive to AF' = 2 new physics:
Amp, = r; Amigl = |14 hee® 7| Am
Sy = sin(28 + 20,) = sin[28 + arg(1 + hge*7d)]
S,, = sin(2a — 26,)

SBs e = sin(28, — 20,) = sin[28, — arg(1 + h,e*7%)]
F%Q Im ]‘—‘22
Aq — I —
SL m (M{erz eQzeq> {M&(l +h €2wq)
ATSYY = ATM cos?(260,) = ATM cos?[arg(1 + h.e?7#)]

® [ree-level constraints unaffected: |V /Vep| @and v (or m — 8 — «)

~
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Flavor and C P violation in SUSY ‘

® Superpotential: [Haber, hep-ph/9709450]
W = Zzg (Y;?Hu QLiULj + Y;'?Hd QLiDLj + YéHd LL@-E’LJ') + uwH,Hg

® Soft SUSY breaking terms: (S=Q1,D1, U, L1, EL)
Lot = — (A%HUQLJ:]LJ' + A?deQLiﬁLj + AfdeZLiELj + BHqu>
2 = 1 - - . .
— 3" (m),; S, - = (MlBB + MWW + Mggg)
scalars

3 Y/ Yukawa and 3 A/ matrices — 6x(9 real + 9 imaginary) parameters
5 m% hermitian sfermion mass-squared matrices — 5x (6 real + 3 imag.) param’s

Gauge and Higgs sectors: g1 .23, 0qcp, M1.2.3, miu ok, B—11 real + 5 imag.
Parameters: (95 + 74) — (15 + 30) from U(3)° x U(1)pq x U(1)g — U(1)p x U(1)g

o CKM + 3in My, M, o (set uB*, M3 real) + 40 in mixing matrices
of fermion-sfermion-gaugino couplings (+80 real param’s)

~
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Neutral meson mixings

® |dentities, neglecting CPV in mixing (not too important, surprisingly poorly known)

K: long-lived = C'P-odd = heavy
D: long-lived = C P-odd (3.50) = light (20)
Bg long-lived = C'P-odd (1.50) = heavy in the SM

B yet unknown, same as B, in SM for m, > Aqcp
Before 2006, we only knew experimentally the kaon line above

® We have learned a lot about meson mixings — good consistency with SM

x = Am/T y = AT'/(2I") A=1—|q/p?
SM theory data SM theory data SM theory data
By O(1) 0.78 |ys|Vig/Vis|>  —0.005+0.019 |—(5.5+1.5)10"% (—4.7 +4.6)1073
Bs | x4 Vis/Vigl?  25.8 O(—0.1) —0.05 £ 0.04 —Ay|V;q/Vis]? (0.34+9.3)1073
K O(1) 0.948 —1 —0.998 4Ree (6.6 £1.6)1073
D < 0.01 <0.016| ©(0.01) yop =0.011+ 0.003 <1074 (1) bound only
ZL —p.iv =
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Some of the key CPV measurements

® . Sykg = —sin[(B-mix = —203) 4 (decay = 0) + (K-mix = 0)] = sin 283
World average: sin28 = 0.681 4 0.025 — 4% precision (theory uncertainty < 1%)

® 5, . “penguin” dominated modes: NP can enter in mixing (as Sy k), also in decay

Earlier hints of deviations reduced: Syx — S¢r = 0.29 £0.17

® . S . — =sin[(B-mix=208)+ (A/A =2y +...)] =sin[2a + O(P/T)]

CLEO 1997: K large, nm small = P, /T, large = pursue all pp, pm, 7w modes

® - interference of tree level b — cus (B~ — DYK~) and b — ucs (B~ — DK ™)

Several difficult measurements (D — Kgntn~, Dcp, CF vs. DCS)

® Need a lot more data to approach irreducible theoretical limitations
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Exciting theoretical developments

® B physics has been and continues to be fertile ground for theory developments

® HQET & OPE — model independent description of certain exclusive and inclu-
sive decays; nonperturbative matrix elements of higher dimensional operators are
being extracted from the data, and used for precision measurements

® SCET — developed to address complicated kinematic regions in B decays, new
and simplified proofs of factorization theorems, some new results for power sup-
pressed processes; may have important applications for jets at the LHC as well

® |attice QCD — in principle, fully model independent nonperturbative information
No longer need model dependent assumptions for practical applications

Large investment worldwide, flavor physics provides some of the most important
applications and testing grounds
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