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Preface

This text is written at the beginning graduate level, and aims to demystify tensors
and provide a unified framework for understanding them in all the different contexts
in which they arise in physics. The word tensor is ubiquitous in physics (stress ten-
sor, moment of inertia tensor, field tensor, metric tensor, tensor product, etc. etc.)
and yet tensors are rarely defined carefully (if at all), and the definition usually has
to do with transformation properties, making it difficult to get a feel for these ob-
jects. Furthermore, physics texts at the beginning graduate level usually only deal
with tensors in their component form, so students wonder what the difference is be-
tween a second rank tensor and a matrix, and why new, enigmatic terminology is
introduced for something they’ve already seen. The irony of this situation is that a
proper understanding of tensors doesn’t require much more mathematics than what
most students encounter as undergraduates, and the clarity gained pays dividends
far outweighing the modest investment. This text introduces just enough linear al-
gebra to set the stage for tensors, with plenty of examples to keep the discussion
grounded. After laying the necessary linear algebraic foundations, we give the mod-
ern (component-free) definition of tensors, followed by applications. Exercises and
problems are included, and the exercises in particular should be done as they arise, or
at least carefully considered, as they often fill out the text and provide good practice
in using the definitions.

It should be said that this text aims to be simultaneously intuitive and rigor-
ous. Thus, although much of the language (especially in the examples) is informal,
almost all the definitions given are precise and are the same as one would find in a
pure math text. This may put off the less mathematically inclined reader; I hope,
however, that such a reader will work through his or her discomfort and develop the
necessary mathematical sophistication, as the results will be well worth it. As for
prerequisites, it is assumed the reader has been through the usual undergraduate
physics curriculum, including a “mathematical methods for physicists” course (with
at least a cursory treatment of vectors and matrices), as well as the standard up-
per division courses in classical mechanics, quantum mechanics, and relativity. Any
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undergraduate versed in those topics, as well as any graduate student in physics,
should be able to read this text. To undergraduates who are eager to learn about
tensors but haven’t yet completed the standard curriculum, I apologize; many of the
examples and practically all of the motivation for the text come from those courses,
and to assume no knowledge of those topics would preclude discussion of the many
applications that motivated me to write this text. Hopefully, such students will re-
turn to this text once they have completed their upper-division coursework, and find
it useful then.

Besides the aforementioned prerequisites I’ve also indulged in the use of some
very basic mathematical shorthand for brevity’s sake; a guide is below. Enjoy!

Some Mathematical Shorthand

R The set of real numbers
C The set of complex numbers
Z the set of positive and negative integers
∈ “is an element of”, “an element of”, i.e. 2 ∈ R reads “2 is an element of

the real numbers”
/∈ ”is not an element of”
∀ “for all”
⊂ “is a subset of”, “a subset of”
≡ denotes a definition
A×B The set {(a, b)} of all ordered pairs where a ∈ A, b ∈ B. Referred to as the

cartesian product of sets A and B. Extends in the obvious way to n-fold
products A1 × . . .× An.

Rn R× . . .× R︸ ︷︷ ︸
n times

Cn C× . . .× C︸ ︷︷ ︸
n times
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Chapter 1

Vector Spaces

Since tensors are basically a special class of functions defined on vector spaces, we
must have a good foundation in linear algebra before discussing them. In particular,
one needs a little bit more linear algebra than is covered in most sophomore or junior
level linear algebra/ODE courses. This chapter starts with the familiar material
about vectors, bases, linear operators etc. but eventually moves on to slightly more
sophisticated topics that are essential for understanding tensors in physics. As we
lay this groundwork, hopefully the reader will also find our slightly more abstract
viewpoint useful in clarifying the nature of many of the objects in physics he/she has
already encountered.

1.1 Definition and Examples

We begin with the definition of an abstract vector space. We’re taught as under-
graduates to think of vectors as arrows with a head and a tail, or as ordered triples
of real numbers, but physics, and especially quantum mechanics, requires a more
abstract notion of vectors. Before reading the definition of an abstract vector space,
keep in mind that the definition is supposed to distill all the essential features of
vectors as we know them (like addition and scalar multiplication) while detaching
the notion of a vector space from specific constructs, like ordered n-tuples of real or
complex numbers (denoted as Rn and Cn respectively). The mathematical utility of
this is that much of what we know about vector spaces depends only on the essential
properties of addition and scalar multiplication, not on other properties particular to
Rn or Cn. If we work in the abstract framework and then come across other math-
ematical objects that don’t look like Rn or Cn but that are abstract vector spaces,
then most everything we know about Rn and Cn will apply to these spaces as well.
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Physics also forces us to use the abstract definition since many quantum mechanical
vector spaces are infinite-dimensional and cannot be viewed as Cn or Rn for any n.
An added dividend of the abstract approach is that we will learn to think about
vector spaces independently of any basis, which will prove very useful.

That said, an abstract vector space is a set V (whose elements are called vectors),
together with a set of scalars C (for us, C is always R or C) and operations of
addition and scalar multiplication that satisfy the following axioms:

1. v + w = w + v for all v, w in V (Commutativity)
2. v + (w + x) = (v + w) + x for all v, w, x in V (Associativity)
3. There exists a unique vector 0 in V such that v + 0 = v ∀v ∈ V
4. ∀v ∈ V there is a unique vector −v such that v + (−v) = 0
5. c(v + w) = cv + cw ∀v, w ∈ V, c ∈ C (Distributivity)
6. 1v = v for all v in V
7. (c1 + c2)v = c1v + c2v for all scalars c1, c2 and vectors v
8. (c1c2)v = c1(c2v) for all scalars c1, c2 and vectors v

Some parts of the definition may seem tedious or trivial, but they are just meant
to ensure that the addition and scalar multiplication operations behave the way we
expect them too. In determining whether a set is a vector space or not, one is
usually most concerned with defining addition in such a way that the set is closed
under addition and that axioms 3 and 4 are satisfied; most of the other axioms
are so natural and obviously satisfied that one, in practice, rarely bothers to check
them. That said, let’s look at some examples from physics, most of which will recur
throughout the text.

Example 1.1 Rn

This is the most basic example of a vector space, and the one on which the
abstract definition is modeled. Addition and scalar multiplication are defined in the
usual way: for v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) in Rn, we have

(v1, v2, . . . , vn) + (w1, w2, . . . , wn) = (v1 + w1, v2 + w2, . . . , vn + wn) (1.1)

and
c(v1, v2, . . . , vn) = (cv1, cv2, . . . , cvn) (1.2)

and the reader should check that the axioms are satisfied. These spaces, of course,
are basic in physics; R3 is the usual 3 dimensional space we live in, R4 is spacetime
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in special relativity, and Rn for higher n occurs in classical physics as configuration
spaces for multiparticle systems (i.e. R6 is the configuration space in the classic two-
body problem, as you need six coordinates to specify the position of two particles in
three-dimensional space).

Example 1.2 Cn

This is another basic example - addition and scalar multiplication are defined as for
Rn, and the axioms are again straightforward to verify. Note, however that Cn is a
complex vector space, i.e. the set C in the definition is C so scalar multiplication by
complex numbers is defined, whereas Rn is only a real vector space. This seemingly
pedantic distinction can often end up being significant. Cn occurs in physics primarily
as the ket space for finite-dimensional quantum mechanical systems, such as particles
with spin but without translational degrees of freedom. For instance, a spin 1/2
particle fixed in space has ket space C2, and more generally a fixed particle with spin
n/2 has ket space Cn+1.

Example 1.3 Mn(R) and Mn(C), n× n matrices with real or complex entries

The vector space structure of Mn(R) and Mn(C) is similar to that of Rn and Cn:
denoting the entry in the ith row and jth column of a matrix A as Aij, we define
addition and (real) scalar multiplication for A,B ∈Mn(R) by

(A+B)ij = Aij +Bij (1.3)

(cA)ij = cAij (1.4)

i.e. addition and scalar multiplication are done component-wise. The same defini-
tions are used for Mn(C), which is of course a complex vector space. The reader can
again check that the axioms are satisfied. Though these vector spaces don’t appear
explicitly in physics very often, they have many important subspaces, one of which
we consider in the next example.

Example 1.4 Hn(C), n× n Hermitian matrices with complex entries

Hn(C), the set of all n×n hermitian matrices1, is obviously a subset ofMn(C), and
in fact it is a subspace of Mn(C) in that it forms a vector space itself. To show this it
is not necessary to verify all of the axioms, since most of them are satisfied by virtue

1hermitian matrices being those which satisfy A† ≡ (AT )∗ = A where superscript T denotes the
transpose and superscript ‘*’ denotes complex conjugation of the entries.
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of Hn(C) being a subset of Mn(C); for instance, addition and scalar multiplication
in Hn(C) are just given by the restriction of those operations in Mn(C) to Hn(C),
so the commutativity of addition and the distributivity of scalar multiplication over
addition follow immediately. What does remain to be checked is that Hn(C) is closed
under addition and contains the zero “vector” (in this case, the zero matrix), both
of which are easily verified. One interesting thing about Hn(C) is that even though
the entries of its matrices can be complex, it does not form a complex vector space;
multiplying a hermitian matrix by i yields an anti -hermitian matrix, so Hn(C) is not
closed under complex scalar multiplication. As far as physical applications go, we
know that physical observables in quantum mechanics are represented by hermitian
operators, and if we are dealing with a finite dimensional ket space such as those
mentioned in Example 2 then observables can be represented as elements of Hn(C).
As an example one can take a fixed spin 1/2 particle whose ket space is C2; the
angular momentum operators are then represented as Li = 1

2
σi, where the σi are the

hermitian Pauli matrices

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
. (1.5)

Example 1.5 L2([a, b]), Square-integrable complex-valued functions on an interval

This example is fundamental in quantum mechanics. A complex-valued function
f on [a, b] ⊂ R is said to be square-integrable if∫ b

a

|f(x)|2dx <∞. (1.6)

Defining addition and scalar multiplication in the obvious way,

(f + g)(x) = f(x) + g(x) (1.7)

(cf)(x) = cf(x), (1.8)

and taking the zero element to be the function which is identically zero (i.e.f(x) = 0
for all x) yields a complex vector space. (Note that if we considered only real-valued
functions then we would only have a real vector space). Verifying the axioms is
straightforward though not entirely trivial, as one must show that the sum of two
square integrable functions is again square-integrable (Problem 1). This vector space
arises in quantum mechanics as the set of normalizable wavefunctions for a particle
in a one-dimensional infinite potential well. Later on we’ll consider the more general
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scenario where the particle may be unbound, in which case a = −∞ and b = ∞
and the above definitions are otherwise unchanged. This vector space is denoted as
L2(R).

Example 1.6 Y l
m(θ, φ) The Spherical Harmonics

Consider the set Pl(R3) of all complex-coefficient polynomial functions on R3 of
fixed degree l, i.e. all linear combinations of functions of the form cxiyjzk where
i+ j + k = l and c ∈ C. Addition and (complex) scalar multiplication are defined in
the usual way and the axioms are again easily verified, so Pl(R3) is a vector space.
Now consider the vector subspaceHl(R3) ⊂ Pl(R3) of harmonic degree l polynomials,
i.e. degree l polynomials satisfying ∆f = 0 where ∆ is the usual three dimensional
Laplacian. The reader may be surprised to learn that the spherical harmonics of
degree l are essentially elements ofHl(R3)! To see the connection, consider the subset
{x+ iy, z, x− iy} ⊂ H1(R3). These functions are linear, hence clearly harmonic since
∆ is a second-order differential operator. Writing them in spherical coordinates with
polar angle θ and azimuthal angle φ gives {reiφ sin θ, r cos θ, re−iφ sin θ}, which up to
normalization and the factor of r give the usual spherical harmonics with l = 1. The
l = 2 case is treated in exercise 1.1 below. Spherical harmonics are discussed further
throughout this text; for a complete discussion, see [ST].

Exercise 1.1 Consider the functions

(x+ iy)2, z(x+ iy), x2 + y2 − 2z2, z(x− iy), (x− iy)2 ∈ P2(R3). (1.9)

Verify that they are in fact harmonic, and then write them in spherical coordinates and
divide by r2 to obtain, up to normalization, the familiar spherical harmonics for l = 2.

Non-example GL(n,R), invertible n× n matrices

GL(n,R), the subset of Mn(R) consisting of invertible n × n matrices, is not a
vector space though it seems like it could be. Why not?

1.2 Span, Linear Independence and Bases

The notion of a basis is probably familiar to most readers, at least intuitively: it’s
a set of vectors out of which we can ‘make’ all the other vectors in a given vector
space V . In this section we’ll make this idea precise and describe bases for some of
the examples in the previous section.
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First, we need the notion of the span of a set S = {v1, v2 . . . vk} ⊂ V , de-
noted Span {v1, v2 . . . vk} or Span S : this is just the set of all vectors of the form
c1v1 + c2v2 + . . .+ ckvk. Such vectors are known as linear combinations of the vi, so
Span S is just the set of all linear combinations of the vectors in S. For instance,
if S = {(1, 0, 0), (0, 1, 0)} ⊂ R3, then Span S is just the set of all vectors of the
form (c1, c2, 0) with c1, c2 ∈ R. If S has infinitely many elements then the span of
S is again all the linear combinations of vectors in S, though in this case the linear
combinations can have an arbitrarily large (but finite) number of terms.2

Next we need the notion of linear dependence: a (not necessarily finite) set of
vectors S is said to be linearly dependent if there exists distinct vectors v1, v2, . . . , vk
in S and scalars c1, c2, . . . , ck, not all of which are 0, such that

c1v1 + c2v2 + . . .+ ckvk = 0. (1.10)

What this definition really means is that at least one vector in S can be writ-
ten as a linear combination of the others, and in that sense is dependent (the
reader should take a second to convince himself of this). If S is not linearly de-
pendent then we say it is linearly independent, and in this case no nonzero vec-
tor in S can be written as a linear combination of any others. For instance, the
set S = {(1, 0, 0), (0, 1, 0), (1, 1, 0)} ⊂ R3 is linearly dependent whereas the set
S ′ = {(1, 0, 0), (0, 1, 0), (0, 1, 1)} is linearly independent, as the reader can check.

With these definitions in place we can now define a basis for a vector space V
as an ordered linearly independent set B ⊂ V whose span is all of V . This means,
roughly speaking, that a basis has enough vectors to make all the others, but no more
than that. When we say that B = {v1, . . . , vk} is an ordered set we mean that the
order of the vi is part of the definition of B, so another basis with the same vectors
but a different order is considered inequivalent. The reasons for this will become
clear as we progress.

One can show3 that all finite bases must have the same number of elements, so
we define the dimension of a vector space V , denoted dim V , to be the number of
elements of any finite basis. If no finite basis exists, then we say that V is infinite
dimensional.

Exercise 1.2 Given a vector v and a finite basis B = {ei}i=1...n, show that the expression
of v as a linear combination of the ei is unique.

2We don’t generally consider infinite linear combinations like
∞∑

i=1

civi = lim
N→∞

N∑
i=1

civi because

in that case we would need to consider whether the limit exists, i.e. whether the sum converges in
some sense. More on this later.

3See [HK].
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Example 1.7 Rn and Cn

Rn has the following natural basis, also known as the standard basis :

{1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1)}. (1.11)

The reader should check that this is indeed a basis, and thus that the dimen-
sion of Rn is, unsurprisingly, n. The same set serves as a basis for Cn, where of
course now the linear combination coefficients ci are allowed to be complex numbers.
Note that although this basis is the most natural, there are infinitely many other
perfectly respectable bases out there; the reader should check, for instance, that
{(1, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0), . . . , (0, . . . , 1, 1), (1, 0, . . . , 0, 1)} is also a basis.

Example 1.8 Mn(R) and Mn(C)

Let Eij be the n × n matrix with a 1 in the ith row, jth column and zeros
everywhere else. Then the reader can check that {Eij}i,j=1...n is a basis for both
Mn(R) and Mn(C), and that both spaces have dimension n2. Again, there are other
nice bases out there; for instance, the symmetric matrices Sij ≡ Eij + Eji, i ≤ j,
and antisymmetric matrices Aij ≡ Eij − Eji, i < j taken together also form a basis
for both Mn(R) and Mn(C).

Exercise 1.3 Let Sn(R), An(R) be the sets of n×n symmetric and antisymmetric matrices,
respectively. Show that both are real vector spaces, compute their dimensions, and check
that dim Sn(R) + dim An(R) = dim Mn(R), as expected.

Example 1.9 H2(C)

Let’s find a basis for H2(C). First, we need to know what a general element of
H2(C) looks like. In terms of complex components, the condition A = A† reads(

a b
c d

)
=

(
ā c̄
b̄ d̄

)
(1.12)

where the bar denotes complex conjugation. This means that a, d ∈ R and b = c̄, so
in terms of real numbers we can write a general element of H2(C) as(

t+ z x− iy
x+ iy t− z

)
= tI + xσx + yσy + zσz (1.13)

where I is the identity matrix and σx, σy, σz are the Pauli matrices defined in (1.5).
The reader can easily check that the set B = {I, σx, σy, σz} is linearly independent,
and since (1.13) shows that B spans H2(C), B is a basis for H2(C). We also see that
H2(C) has (real) dimension 4.
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Exercise 1.4 Using the matrices Eij and Aij from example 1.8, construct a basis for
Hn(C) and compute its dimension.

Example 1.10 Y l
m(θ, φ)

We saw in the previous section that the Y l
m, or more precisely rlY l

m, are elements
of the vector space Hl(R3). What’s more is that the set {rlY l

m}−l≤m≤l is actually a
basis for Hl(R3). In the case l = 1 this is clear since H1(R3) = P1(R3) and clearly
{x+ iy, x− iy, z} is a basis for P1(R3). For l > 1 proving our claim requires a little
more effort; see Problem 2. Another simpler basis for P1(R3) would be the cartesian
basis {x, y, z}; physicists use the spherical harmonic basis because those functions
are eigenfunctions of the orbital angular momentum operator Lz, which on Hl(R3)
is represented by Lz = −i(x ∂

∂y
− y ∂

∂x
). We shall discuss the relationship between the

two bases in detail later.

Not Quite Example L2([−a, a])
From doing 1-D problems in quantum mechanics one already ‘knows’ that the

set {einπx
a }n∈Z is a basis for L2([−a, a]). There’s a problem, however; we’re used to

taking infinite linear combinations of these basis vectors, but our definition above
only allows for finite linear combinations. What’s going on here? It turns out
that L2([−a, a]) has more structure than your average vector space: it is an infinite
dimensional Hilbert Space, and for such spaces we have a generalized definition of a
basis, one that allows for infinite linear combinations. We will discuss Hilbert spaces
in section 1.6

1.3 Components

One of the most useful things about introducing a basis for a vector space is that
it allows us to write elements of the vector space as n-tuples, in the form of either
column or row vectors, as follows: Given v ∈ V and a basis B = {ei}i=1...n for V, we
can write

v =
n∑
i=1

viei (1.14)
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for some numbers vi, called the components of v with respect to B. We can then
represent v by the column vector, denoted [v]B, as

[v]B =


v1

v2

·
·
·
vn

 (1.15)

or the row vector
[v]TB = (v1, v2, . . . , vn) (1.16)

where the superscript T denotes the usual transpose of a vector and where the
subscript B just reminds us which basis the components are referred to, and will be
dropped if there is no ambiguity. With a choice of basis, then, every n-dimensional
vector space can be made to ‘look like’ Rn or Cn. Writing vectors in this way greatly
facilitates computation, as we’ll see. One must keep in mind, however, that vectors
exist independently of any chosen basis, and that their expressions as row or column
vectors depend very much on a choice of basis B. This will be evident in the examples.

Example 1.11 E3 3-D Euclidean space

We said in Example 1.1 that R3 represented the 3-dimensional space we inhabit,
but this is not quite true. After all, given (x, y, z) ∈ R3, what point of space is
this referring to? The space we live in is not quite R3 but rather 3-dimensional
Euclidean space E3, defined as follows: pick a point in space, call it the origin. Then
there exists a directed line segment (arrow) from the origin to every other point in
space. We identify the points in space with the arrows pointing to them from the
origin. These arrows can then be added together head to tail and multiplied by real
numbers by scaling, yielding a real vector space. If we pick a basis of three vectors,
call it K = {x̂, ŷ, ẑ}, we can then, for any point in space, write the corresponding
vector v = xx̂+yŷ+zẑ as [v]TK = (x, y, z), hence identifying E3 with R3 as described
above.

Example 1.12 Rigid Body Motion

One area of physics where the distinction between a vector and its expression as an
ordered triple is crucial is rigid body motion. In this setting our vector space is E3

and we usually deal with two bases, an arbitrary but fixed space axes K ′ = {x̂′, ŷ′, ẑ′}
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and a time-dependent body axes K = {x̂(t), ŷ(t), ẑ(t)} which is fixed relative to the
rigid body. When we write down vectors in E3, like the angular momentum vector
L or the angular velocity vector ω, we must keep in mind what basis we are using,
as the component expressions will differ drastically depending on the choice of basis.
For example, if there is no external torque on a rigid body, [L]K′ will be constant
whereas [L]K will in general be time-dependent.

Example 1.13 L2([−a, a])

We know from experience in quantum mechanics that all square integrable functions
on an interval [−a, a] have an expansion4 f =

∑∞
m=−∞ cme

imπx
a in terms of the ‘basis’

{eimπx
a }m∈Z. This expansion is known as the Fourier series of f , and we see that the

cn, commonly known as the Fourier coefficients, are nothing but the components of
the vector f in the basis {eimπx

a }m∈Z.

1.4 Linear Operators

One of the basic notions in linear algebra, fundamental in quantum mechanics, is
that of a linear operator. A linear operator on a vector space V is a function T from
V to itself satisfying the linearity condition

T (cv + w) = cT (v) + T (w). (1.17)

Sometimes we write Tv instead of T (v). The reader should check that the set of all
linear operators on V forms a vector space, denoted T (V ). The reader has doubtless
seen many examples of linear operators: for instance, we can interpret a real n×nma-
trix as a linear operator on Rn that acts on column vectors by matrix multiplication.
Thus Mn(R) (and, similarly, Mn(C)) can be viewed as vector spaces whose elements
are themselves linear operators. In fact, that was exactly how we interpreted the
vector subspace H2(C) ⊂M2(C) in example 1.4; in that case, we identified elements
of H2(C) as the quantum-mechanical angular momentum operators. There are nu-
merous other examples of quantum mechanical linear operators - for instance, the
familiar position and momentum operators x̂ and p̂ act on L2([−a, a]) by

x̂f(x) = xf(x) (1.18)

p̂f(x) =
~
i

∂f

∂x
. (1.19)

Another class of less familiar examples is given below.

4This fact is proved in most real analysis books, see [R].
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Example 1.14 T (V) acting on T (V)

We are familiar with linear operators taking vectors into vectors, but they can also
be used to take linear operators into linear operators, as follows: Given A,B ∈ T (V ),
we can define a linear operator adA ∈ T (T (V )) acting on B by

adA(B) ≡ [A,B] (1.20)

where [·, ·] indicates commutator. This action of A on T (V ) is called the adjoint ac-
tion or adjoint representation. The adjoint representation has important applications
in quantum mechanics; for instance, the Heisenberg picture emphasizes T (V ) rather
than V and interprets the Hamiltonian as an operator in the adjoint representation.
In fact, for any observable A the Heisenberg equation of motion reads5

dA

dt
= i adH(A). (1.21)

2

One important property of a linear operator T is whether or not it is invertible,
i.e. whether there exists a linear operator T−1 such that TT−1 = T−1T = I where
I is the identity operator.6 The reader may recall that, in general, an inverse for a
map T exists if and only if T is both 1-1, meaning

T (v) = T (w) =⇒ v = w, (1.22)

and onto, meaning that ∀w there exists v such that T (v) = w. If this is unfamiliar
the reader should take a moment to convince himself of this. In the case of a linear
operator on a vector space, these two conditions are actually equivalent and turn out
also (see exercise 1.6 below) to be equivalent to the statement

T (v) = 0 =⇒ v = 0, (1.23)

so T is invertible if and only if the only vector it sends to 0 is the zero vector.

Exercise 1.5 Let T be a linear operator on a vector space V . Show that T being 1-1 is
equivalent to T being onto. Feel free to introduce a basis to assist you in the proof.

5Normally there would be a factor of ~ in the denominator in the right hand side of (1.21), but
here and below we set ~ = 1.

6Throughout this text I will denote the identity operator or identity matrix; it will be clear from
context which is meant.
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Exercise 1.6 Suppose T (v) = 0 =⇒ v = 0. Show that this is equivalent to T being
1-1, which by the previous exercise is equivalent to T being 1-1 and onto, which is then
equivalent to T being invertible.

An important point to keep in mind is that a linear operator is not the same
thing as a matrix; just as with vectors, the identification can only be made once a
basis is chosen. For operators on finite-dimensional spaces this is done as follows:
choose a basis B = {ei}i=1...n. Then the action of T is determined by its action on
the basis vectors,

T (v) = T

(
n∑
i=1

viei

)
=

n∑
i=1

viT (ei) =
n∑

i,j=1

viT j
i ej (1.24)

where the numbers T j
i , again called the components of T with respect to B,7 are

defined by T (ei) =
∑n

j=1 T
j
i ej. We then have

[v]B =


v1

v2

·
·
·
vn

 and [T (v)]B =



∑n
i=1 v

iT 1
i∑n

i=1 v
iT 2
i

·
·
·∑n

i=1 v
iT n
i

 (1.25)

so if we define the matrix of T in the basis B as

[T ]B =


T 1

1 T 1
2 . . . T 1

n

T 1
2 T 2

2 . . . T n
2

· · · ·
· · · ·
· · · ·
T 1
n T 2

n . . . T n
n

 (1.26)

we then have
[T (v)]B = [T ]B[v]B (1.27)

as a matrix equation. Thus, [T ]B really does represent T in components, where the
action of [T ]B on vectors is by the usual matrix multiplication. Furthermore, if we

7Nomenclature to be justified in the next chapter.
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have two linear operators A and B and we define their product (or composition) AB
as the linear operator

(AB)(v) ≡ A(B(v)), (1.28)

the reader can then show that [AB] = [A][B]. Thus, composition of operators
becomes matrix multiplication of the corresponding matrices.

Exercise 1.7 For two linear operatorsA andB on a vector space V , show that [AB] = [A][B]
in any basis.

Example 1.15 Lz,Hl(R3) and Spherical Harmonics

Recall that H1(R3) is the set of all linear functions on R3 and that
{rY 1

m}−1≤m≤1 = {x+ iy, z, x− iy} and {x, y, z} are both bases for this space. Now
consider the familiar angular momentum operator Lz = −i(x ∂

∂y
−y ∂

∂x
) on this space.

The reader can check that

Lz(x+ iy) = x+ iy =⇒ (Lz)
1

1 = 1, (Lz)
2

1 = (Lz)
3

1 = 0 (1.29)

Lz(z) = 0 =⇒ (Lz)
i

2 = 0 ∀i (1.30)

Lz(x− iy) = x− iy =⇒ (Lz)
3

3 = −1, (Lz)
1

3 = (Lz)
2

3 = 0 (1.31)

so in the spherical harmonic basis,

[Lz]{rY 1
m} =

 1 0 0
0 0 0
0 0 −1

 . (1.32)

This of course just says that the wavefunctions x+iy, z and x−iy have Lz eigenvalues
of 1, 0, and −1 respectively.

Meanwhile,

Lz(x) = iy (1.33)

Lz(y) = −ix (1.34)

Lz(z) = 0 (1.35)

so in the cartesian basis,

[Lz]{x,y,z} =

 0 −i 0
i 0 0
0 0 0

 , (1.36)

a very different looking matrix.

18



Exercise 1.8 Compute the matrices of Lx = −i(y ∂
∂z − z ∂

∂y ) and Ly = −i(z ∂
∂x − x ∂

∂z )
acting on H1(R3) in both the cartesian and spherical harmonic bases.

Before concluding this section we should remark that there is much more one
can say about linear operators, particularly concerning eigenvectors, eigenvalues and
diagonalization. Though these topics are relevant for physics, we will not need them
in this text and good references for them abound, so we omit them. The interested
reader can consult the first chapter of [SA] for a practical introduction, or [HK] for
a thorough discussion.

1.5 Dual Spaces

Another basic construction associated with a vector space, essential for understand-
ing tensors and usually left out of the typical ‘mathematical methods for physicists’
courses, is that of a dual space. Given a vector space V with scalars C, its dual space
V ∗ is defined to be the set of C-valued linear functions f on V (referred to as dual
vectors or linear functionals), where ‘linear’ again means f(cv+w) = cf(v) + f(w).
It’s easily checked that the usual definitions of addition and scalar multiplication and
the zero function turn V ∗ into a vector space over C. Given a (not necessarily finite)
basis {ei} for V , any linear function f on V is determined entirely by it’s values on
the ei, since for any v =

∑n
i=1 v

iei

f(v) = f

(
n∑
i=1

viei

)
(1.37)

=
n∑
i=1

vif(ei) (1.38)

≡
n∑
i=1

vifi (1.39)

where the fi ≡ f(ei) are, unsurprisingly, referred to as the components of f in the
basis {ei}. To justify this nomenclature, consider a set {ei} (note the raised indices)
of dual vectors defined by

ei(ej) = δij. (1.40)
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If V is finite-dimensional with dimension n, it’s easy to check (by evaluating both
sides on basis vectors) that we can write8

f =
n∑
i=1

fie
i (1.41)

so that the fi really are the components of f . Since f was arbitrary, this means that
the ei span V ∗. In exercise 1.9 below the reader will show that the ei are actually
linearly independent, so {ei}i=1...n is actually a basis for V ∗. We sometimes say that
the ei are dual to the ei. Note that we have shown that V and V ∗ always have the
same dimension. Note also that for a given v =

∑n
i=1 v

iei,

ei(v) =
n∑
j=1

vjei(ej) =
n∑
j=1

vjδij = vi (1.42)

so we can alternatively think of the ith component of a vector as the value of the ith
dual vector on that vector.

Exercise 1.9 By carefully working with the definitions, show that the ei defined in (1.40)
are linearly independent.

Example 1.16 Dual spaces of Rn, Cn, Mn(R) and Mn(C)

Consider the basis {ei} of Rn and Cn, where ei is the vector with a 1 in the ith
place and 0’s everywhere else; this is just the basis described in Example 1.7. Now
consider the element f j of V ∗ which eats a vector in Rn or Cn and spits out the jth
component; clearly f j(ei) = δji so the f j are just the dual vectors ej described above.
Similarly, for Mn(R) or Mn(C) consider the dual vector f ij defined by f ij(A) = Aij;
these vectors are clearly dual to the Eij and thus form the corresponding dual basis.
While the f ij may seem a little unnatural or artificial, the reader should note that
there is one linear functional on Mn(R) and Mn(C) which is familiar: the Trace
functional, denoted Tr and defined by

Tr(A) =
n∑
i=1

Aii. (1.43)

What are the components of Tr with respect to the f ij ?

8If V is infinite-dimensional then this may not work as the sum required may be infinite, and as
mentioned before care must be taken in defining infinite linear combinations .
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Not Quite Example Dual space of L2([−a, a])

We haven’t yet properly treated L2([−a, a]) so we clearly cannot yet properly
treat its dual, but we would like to point out here that in infinite dimensions, dual
spaces get much more interesting. In finite dimensions, we saw above that a basis
{ei} for V induces a dual basis {ei} for V ∗, so in a sense V ∗ ‘looks’ very much like V .
This is not true in infinite dimensions - in this case we still have linear functionals
dual to a given basis, but these may not span the dual space. Consider the case of
L2([−a, a]); the reader can check that {en}n∈Z defined by

en(f(x)) ≡ 1

2a

∫ a

−a
e−i

nπx
a f(x)dx (1.44)

satisfy en(ei
mπx

a ) = δmn and are hence dual to {eimπx
a }m∈Z. In fact, these linear

functionals just eat a function and spit out its nth Fourier coefficient. There are
linear functionals, however, that can’t be written as a linear combination of the ei;
one such linear functional is the Dirac Delta Functional δ, defined by

δ(f(x)) ≡ f(0). (1.45)

We will prove this claim and place δ in its proper context in section 1.7.

1.6 Non-Degenerate Hermitian Forms

Non-degenerate Hermitian forms, of which the Euclidean dot product, Minkowski
metric and Hermitian scalar product of quantum mechanics are but a few examples,
are very familiar to most physicists. We introduce them here not just to formal-
ize their definition but also to make the fundamental but usually unacknowledged
connection between these objects and dual spaces.

A non-degenerate Hermitian form on a vector space V is a C-valued function
(· , ·) which assigns to an ordered pair of vectors v, w ∈ V a scalar, denoted (v, w),
having the following properties:

1. (v, w1 + cw2) = (v, w1) + c(v, w2) (linearity in the second argument)

2. (v, w) = (w, v) (Hermiticity ; the bar denotes complex conjugation)

3. For each v 6= 0 ∈ V , there exists w ∈ V such that (v, w) 6= 0 (non-degeneracy)

Note that conditions 1 and 2 imply that (cv, w) = c̄(v, w), so (· , ·) is conjugate-
linear in the first argument. Also note that for a real vector space, condition 2
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implies that (· , ·) is symmetric, i.e. (v, w) = (w, v)9; in this case, (· , ·) is called a
metric. Condition 3 is a little nonintuitive but will be essential in the connection
with dual spaces. If, in addition to the above 3 conditions, the Hermitian form obeys

4. (v, v) > 0 for all v ∈ V, v 6= 0 (positive-definiteness)

then we say that (· , ·) is an inner product, and a vector space with such a Hermitian
form is called an inner product space. Note that condition 4 implies 3. Our reason
for separating condition 4 from the rest of the definition will become clear when we
consider the examples. One very important use of non-degenerate Hermitian forms
is to define preferred sets of bases known as orthornormal bases. Such bases B = {ei}
by definition satisfy (ei, ej) = ±δij and are extremely useful for computation, and
ubiquitous in physics for that reason. If (· , ·) is positive-definite (hence an inner
product), then orthonormal basis vectors satisfy (ei, ej) = δij and may be constructed
out of arbitrary bases by the Gram-Schmidt process. If (·, ·) is not positive-definite
then orthonormal bases may still be constructed out of arbitrary bases, though the
process is slightly more involved. See [HK, sec. 8.2, 10.2] for details.

Exercise 1.10 Let (· , ·) be an inner product. If a set of vectors e1, . . . , ek is orthogonal, i.e.
(ei, ej) = 0 when i 6= j, show that they are linearly independent. Note that an orthonormal
set (i.e. (ei, ej) = ±δij) is just an orthogonal set in which the vectors have unit length.

Example 1.17 The dot product (or Euclidean metric) on Rn

Let v = (v1, . . . , vk), w = (w1, . . . , wk) ∈ Rn. Define (· , ·) on Rn by

(v, w) ≡
n∑
i=1

viwi. (1.46)

This is sometimes written as v · w. The reader can check that (· , ·) is an inner
product, and that the standard basis given in example 1.7 is an orthonormal basis.

Example 1.18 The Hermitian scalar product on Cn

Let v = (v1, . . . , vk), w = (w1, . . . , wk) ∈ Cn. Define (· , ·) on Cn by

(v, w) ≡
n∑
i=1

v̄iwi. (1.47)

9In this case, (· , ·) is linear in the first argument as well as the second and would be referred to
as bilinear.
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Again, the reader can check that (· , ·) is an inner product, and that the standard
basis given in example 1.7 is an orthonormal basis. Such inner products on complex
vector spaces are sometimes referred to as Hermitian scalar products and are present
on every quantum mechanical vector space. In this example we see the importance
of condition 2, manifested in the conjugation of the vi in (1.47); if that conjugation
wasn’t there, a vector like v = (i, 0, . . . , 0) would have (v, v) = −1 and (· , ·) wouldn’t
be an inner product.

Exercise 1.11 Let A,B ∈Mn(C). Define (· , ·) on Mn(C) by

(A,B) =
1
2
Tr(A†B). (1.48)

Check that this is indeed an inner product. Also check that the basis {I, σx, σy, σz} for
H2(C) is orthonormal with respect to this inner product.

Example 1.19 The Minkowski Metric on 4-D Spacetime

Consider two vectors (often called “events” in the physics literature) vi = (xi, yi, zi, ti) ∈ R4,
i = 1, 2. The Minkowski metric on spacetime,10 denoted η, is defined to be11

η(v1, v2) ≡ x1x2 + y1y2 + z1z2 − t1t2. (1.49)

η is clearly linear in both it’s arguments (i.e. bilinear) and symmetric, hence satisfy-
ing conditions 1 and 2, and the reader will check condition 3 in exercise 1.12 below.
Notice that for v = (1, 0, 0, 1), η(v, v) = 0 so η is not positive-definite, hence not
an inner product. This is why we separated condition 4, and considered the more
general non-degenerate Hermitian forms instead of just inner products.

Exercise 1.12 Let v = (x, y, z, t). Show that η is non-degenerate by finding another
vector w such that η(v, w) 6= 0.

We should point out here that the Minkowski metric can be written in components
as a matrix, just as a linear operator can. Taking the standard basis B = {ei}i=1,2,3,4

in R4, we can define the components of η, denoted ηij, as

ηij ≡ η(ei, ej). (1.50)

10As in example 1.11, we can identify physical spacetime with R4 once we choose a coordinate
system.

11We are, of course arbitrarily choosing the + + +− signature, we could equally well choose
−−−+.
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Then, just as was done for linear operators, the reader can check that if we define
the matrix of η in the basis B, denoted [η]B, as the matrix

[η]B =


η11 η21 η31 η41

η12 η22 η32 η42

η13 η23 η33 η43

η14 η24 η34 η44

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (1.51)

we can write

η(v1, v2) = [v1]
T [η][v2] = (x1, y1, z1, t1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




x2

y2

z2

t2

 (1.52)

as some readers may be used to from computations in relativity. Note that the
symmetry of η implies that [η]B is a symmetric matrix for any basis B.

Example 1.20 The Hermitian scalar product on L2([−a, a])

For f, g ∈ L2([−a, a]), define

(f, g) ≡ 1

2a

∫ a

−a
f̄g dx. (1.53)

The reader can easily check that this defines an inner product on L2([−a, a]), and that
{einπx

a }n∈Z is an orthonormal set. What’s more, this inner product turns L2([−a, a])
into a Hilbert Space, which is an inner product space that is complete. The notion
of completeness is a technical one, so we will not give its precise definition, but in
the case of L2([−a, a]) one can think of it as meaning roughly that a limit of square-
integrable functions is again square-integrable. Making this precise and proving it for
L2([−a, a]) is the subject of real analysis textbooks and far outside the scope of this
text12, so we’ll content ourselves here with just mentioning completeness and noting
that it is responsible for many of the nice features of Hilbert spaces, in particular
the generalized notion of a basis which we now describe.

Given a Hilbert space H and an orthonormal (and possibly infinite) set {ei} ⊂ H,
the set {ei} is said to be an orthonormal basis for H if

(ei, f) = 0 ∀i =⇒ f = 0. (1.54)

12See [R] , for instance, for this and for proofs of all the claims made in this example.
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The reader can check (see exercise 1.13 below) that in the finite-dimensional case
this definition is equivalent to our previous definition of an orthonormal basis. In
the infinite-dimensional case, however, this definition differs substantially from the
old one in that we no longer require Span{ei} = H (recall that spans only include
finite linear combinations). Does this mean, though, that we now allow arbitrary
infinite combinations of the basis vectors? If not, which ones are allowed? For
L2([−a, a]), for which {einπx

a }n∈Z is an orthonormal basis, we mentioned in example
1.13 that any f ∈ L2([−a, a]) can be written as

f =
∞∑

n=−∞

cne
inπx

a (1.55)

where
1

2a

∫ a

−a
|f |2dx =

∞∑
n=−∞

|cn|2 <∞ (1.56)

(The first equality should be familiar from quantum mechanics and follows from exer-
cise 1.14 below). The converse to this is also true, and this is where the completeness
of L2([−a, a]) is essential: if a set of numbers cn satisfy (1.56), then the series

g(x) ≡
∞∑

n=−∞

cne
inπx

a (1.57)

converges, yielding a square-integrable function g. So L2([−a, a]) is the set of all
expressions of the form (1.55), subject to the condition (1.56). Now we know how to
think about infinite-dimensional Hilbert spaces and their bases: a basis for a Hilbert
space is an infinite set whose infinite linear combinations, together with some suitable
convergence condition, form the entire vector space.

Exercise 1.13 Show that the definition (1.54) of a Hilbert space basis is equivalent to our
original definition of a basis for a finite-dimensional inner product space V .

Exercise 1.14 Show that for f =
∞∑

n=−∞
cne

inπx
a , g =

∞∑
m=−∞

dme
imπx

a ∈ L2([−a, a]),

(f, g) =
∞∑

n=−∞
c̄ndn (1.58)

so that (· , ·) on L2([−a, a]) can be viewed as the infinite-dimensional version of the standard
Hermitian scalar product on Cn.
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1.7 Non-Degenerate Hermitian Forms and Dual

Spaces

We are now ready to explore the connection between dual vectors and non-degenerate
Hermitian forms. Given a non-degenerate Hermitian form (· , ·) on a finite-dimensional
vector space V , we can associate to any v ∈ V a dual vector ṽ ∈ V ∗ defined by

ṽ(w) ≡ (v, w). (1.59)

Sometimes we write ṽ = (v, ·). This map we have just defined, call it L, from V to
V ∗ is conjugate-linear since for v = cx+ z, v, z, x ∈ V ,

ṽ(w) = (v, w) = (cx+ z, w) = c̄(x,w) + (z, w) = c̄x̃(w) + z̃(w) (1.60)

so
L(v) = L(cx+ z) ≡ ṽ = c̄x̃+ z̃ = c̄L(x) + L(v). (1.61)

In exercise 1.15 below the reader will show that the non-degeneracy of (· , ·) implies
that L is 1-1 and onto, so L is an invertible map from V to V ∗. The reader will
see in the examples below that he is already familiar with L in a couple of different
contexts.

Exercise 1.15 Use the non-degeneracy of (· , ·) to show that L is 1-1, i.e. that
L(v) = L(w) =⇒ v = w. Combine this with the argument used in exercise 1.6 to show
that L is onto as well.

Exercise 1.16 Given a basis {ei}i=1...n, under what circumstances do we have ei = ẽi for
all i?

Example 1.21 Bras and kets in quantum mechanics

Let H be a quantum mechanical Hilbert space with inner product (· , ·) . In Dirac
notation, a vector ψ ∈ H is written as a ket |ψ〉 and the inner product (ψ, φ) is
written 〈ψ|φ〉. What about bras, written as 〈ψ|? What, exactly, are they? Most
quantum mechanics texts gloss over their definition, just telling us that they are in
1-1 correspondence with kets and can be combined with kets as 〈ψ|φ〉 to get a scalar.
We are also told that the correspondence between bras and kets is conjugate-linear,
i.e. that the bra corresponding to c|ψ〉 is c̄〈ψ|. From what we have seen in this
section, it is now clear that bras really are dual vectors, labeled in the same way as
regular vectors, because the map L allows us to identify the two. In short, 〈ψ| is
really just L(ψ), or equivalently (ψ, ·).
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Example 1.22 Raising and lowering indices in relativity

Consider R4 with the Minkowski metric, let B = {eµ}µ=1−4 and B′ = {eµ}µ=1−4

be the standard basis and dual basis for R4 (we use a greek index to conform with
standard physics notation), and let v =

∑4
µ=1 v

µeµ ∈ R4. What are the components
of ṽ in terms of the vµ? Well, as we saw in section 1.5, the components of a dual
vector are just given by evaluation on the basis vectors, so

ṽµ = ṽ(eµ) = (v, eµ) =
∑
ν

vν(eν , eµ) =
∑
ν

vνηνµ. (1.62)

In matrices, this reads
[ṽ]B′ = [η]B[v]B (1.63)

so matrix multiplication of a vector by the metric matrix gives the corresponding
dual vector in the dual basis. Thus, the map L is implemented in coordinates by
[η]. Now, we mentioned above that L is invertible; what does L−1 look like in
coordinates? Well, by the above, L−1 should be given by matrix multiplication by
[η]−1, the matrix inverse to [η]. Denoting the components of this matrix by ηµν (so
that ητµηντ = δµν ) and writing f̃ ≡ L−1(f) where f is a dual vector, we have

[f̃ ] = [η]−1[f ] (1.64)

or in components

f̃µ =
∑
ν

ηνµfν . (1.65)

Now, in physics one usually works with components of vectors, and in relativ-
ity the numbers vµ are called the contravariant components of v and the numbers
vµ ≡

∑
ν v

νηνµ are referred to as the covariant components of v. We see now that
the contravariant components of a vector are just its usual components, while its co-
variant components are actually the components of the associated dual vector ṽ. For
a dual vector f , the situation is reversed - the covariant components fµ are its actual
components, and the contravariant components are the components of f̃ . Since L
allows us to turn vectors into dual vectors and vice-versa, we usually don’t bother
trying to figure out whether something is ‘really’ a vector or a dual vector; it can be
either, depending on which components we use.

The above discussion shows that the familiar process of “raising” and “lowering”
indices is just the application of the map L (and its inverse) in components. For an
interpretation of [η]−1 as the matrix of a metric on R4∗, see the Problems.
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Exercise 1.17 Consider R3 with the Euclidean metric. Show that the covariant and
contravariant components of a vector in an orthonormal basis are identical. This explains
why we never bother with this terminology, nor the concept of dual spaces, in basic physics
where R3 is the relevant vector space. Is the same true for R4 with the Minkowski metric?

Example 1.23 L2([−a, a]) and its dual

In our above discussion of the map L we stipulated that V should be finite-dimensional.
Why? If you examine the discussion closely, you’ll see that the only place where we
use the finite-dimensionality of V is in showing that L is onto. Does this mean that
L is not necessarily onto in infinite dimensions? Consider the Dirac Delta functional
δ ∈ L2([−a, a])∗. Does

δ(g) = g(0)
?
= (δ(x), g) (1.66)

for some function δ(x)? If we write g as g(x) =
∞∑

n=−∞

dne
inπx

a , then simply evaluating

g at x = 0 gives

g(0) =
∞∑

n=−∞

dn
?
= (δ(x), g) (1.67)

which, when compared with (1.58), tells us that the function δ(x) must have fourier
coefficients cn = 1 for all n. Such cn, however, do not satisfy (1.56) and hence δ(x)
cannot be a square-integrable function. So the dual vector δ is not in the image of
the map L, hence L is not onto in the case of L2([−a, a]).
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Chapter 1 Problems

1. Prove that L2([−a, a]) is closed under addition. You’ll need the triangle inequal-
ity, as well as the following inequality, valid for all λ ∈ R :
0 ≤

∫ a
−a(|f |+ λ|g|)2dx.

2. In this problem we show that {rlY l
m} is a basis for Hl(R3). We’ll gloss over a

few subtleties here; for a totally rigorous discussion see [ST].

a) Let f ∈ Hl(R3). Argue that f can be written as f = rlY (θ, φ). Then
write ∆f = 0 in spherical coordinates, separating out the angular
part of the laplacian (which we denote as ∆S2) as

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆S2 . (1.68)

You should find
∆S2Y = −l(l + 1)Y. (1.69)

b) If you have never done so, show that

∆S2 = L2
x + L2

y + L2
z ≡ L2 (1.70)

so that (1.69) says that Y is an eigenfunction of L2, as expected.
The theory of angular momentum13 then tells us that Hl(R3) has
dimension 2l + 1.

c) Exhibit a basis for Hl(R3) by considering the function f ll ≡ (x+ iy)l

and showing that

Lz(f
l
l ) = lf ll , L+(f ll ) ≡ (Lx + iLy)(f

l
l ) = 0. (1.71)

The theory of angular momentum then tells us that (L−)mf ll ≡ f ll−m
satisfies Lz(f

l
l−m) = (l − m)f lm and that {f lm}−l≤m≤l is a basis for

Hl(R3).

d) Writing f lm = rlY l
m we see that Y l

m satisfies L2Y l
m = −l(l+ 1)Y l

m and
LzY

l
m = mY l

m as expected. Now use this definition of Y l
m to compute

all the spherical harmonics for l = 1, 2 and show that this agrees,
up to normalization, with the spherical harmonics as tabulated in
any quantum mechanics textbook. If you read example 1.6 and did
exercise 1.1 then all you have to do is compute f 1

m, −1 ≤ m ≤ 1 and
f 2
m, −2 ≤ m ≤ 2 and show that these functions agree with the ones

given there.

13see [SA, G]
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3. In discussions of quantum mechanics the reader may have heard the phrase
“angular momentum generates rotations”. What this means is that if one
takes a component of the angular momentum such as Lz and exponentiates it,
i.e. if one considers the operator

exp (−iφLz) ≡
∞∑
n=0

1

n!
(−iφLz)n (1.72)

= I − iφLz +
1

2!
(−iφLz)2 +

1

3!
(−iφLz)3 + . . .

(the usual power series expansion for ex) then one gets the operator which
represents a rotation about the z axis by an angle φ. Confirm this in one
instance by explicitly summing the power series for the operator [Lz]{x,y,z} of
example 1.15 to get

exp
(
−i[Lz]{x,y,z}

)
=

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , (1.73)

the usual matrix for a rotation about the z-axis.

4. a) Let A be a linear operator on a finite-dimensional complex vector
space V with inner product (· , ·) . Define the adjoint of A, denoted
A†, by the equation

(A†v, w) = (v, Aw) (1.74)

Show that in an orthonormal basis {ei}i=1...n, [A†] = [A]†, where the
dagger outside the brackets denotes the usual conjugate transpose of
a matrix. You may want to prove and use the fact A i

j = ei(Aej).

b) If A satisfies A = A†, A is then said to be self-adjoint or hermitian.
Show that any eigenvalue of Amust be real. Note then that in part a)
you showed that in an orthonormal basis the matrix of a hermitian
operator is a hermitian matrix. This is not necessarily true in a
non-orthonormal basis.
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5. Let g be a non-degenerate bilinear form on a vector space V (we have in mind
the Euclidean metric on R3 or the Minkowski metric on R4). Pick an arbitrary
(not necessarily orthonormal) basis, let [g]−1 be the matrix inverse of [g] in this
basis, and write gµν for the components of [g]−1. Also let f, h ∈ V ∗. Define a
non-degenerate bilinear form g̃ on V ∗ by

g̃(f, h) ≡ g(f̃ , h̃) (1.75)

where f̃ = L−1(f) as in example 1.22. Show that

g̃µν ≡ g̃(eµ, eν) = gµν (1.76)

so that [g]−1 is truly a matrix representation of a non-degenerate bilinear form
on V ∗.

6. In this problem we’ll acquaint ourselves with P (R), the set of polynomials in
one variable x with real coefficients. We’ll also meet several bases for this space
which the reader should find familiar.

a) P (R) is the set of all functions of the form

f(x) = c0 + c1x+ c2x
2 . . .+ cnx

n (1.77)

where n is arbitrary. Verify that P (R) is a (real) vector space. Then
show that P (R) is infinite-dimensional by showing that, for any finite
set S ⊂ P (R), there is a polynomial that is not in Span S. Exhibit
a simple infinite basis for P (R).

b) Compute the matrix corresponding to the operator d
dx
∈ T (P (R))

with respect to the basis you found in part a).

c) One can turn P (R) into an inner product space by considering inner
products of the form

(f, g) ≡
∫ b

a

f(x)g(x)W (x) dx (1.78)

where W (x) is a nonnegative weight function. One can then take the
basis B = {1, x, x2, x3, . . .} and apply the Gram-Schmidt process to
get an orthogonal basis. With the proper choice of range of integra-
tion [a, b] and weight function W (x), we can obtain (up to normaliza-
tion) the various orthogonal polynomials one meets in studying the
various differential equations that arise in electrostatics and quantum
mechanics.
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i) Let [a, b] = [−1, 1] andW (x) = 1. Consider the set S = {1, x, x2, x3} ⊂ B.
Apply the Gram-Schmidt process to this set to get (up to
normalization) the first four Legendre Polynomials

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x).

The Legendre Polynomials show up in the solutions to the
differential equation (1.69), where we make the identification
x = cos θ. Since −1 ≤ cos θ ≤ 1, this explains the range of
integration in the inner product.

ii) Now let [a, b] = (−∞,∞) andW (x) = e−x
2
. Gram-Schmidt S

to get the first four Hermite Polynomials

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x.

These polynomials arise in the solution to the Schrodinger
equation for a one-dimensional harmonic oscillator. Note
that the range of integration corresponds to the range of the
position variable, as expected.

iii) Finally, let [a, b] = (0,∞) andW (x) = e−x. Again, Gram-Schmidt S
to get the first four Laguerre Polynomials

L0(x) = 1

L1(x) = −x+ 1

L2(x) =
1

2
(x2 − 4x+ 2)

L3(x) =
1

6
(−x3 + 9x2 − 18x+ 6).

These polynomials arise as solutions to the radial part of
the Schrodinger equation for the Hydrogen atom. In this
case x is interpreted as a radial variable, hence the range of
integration (0,∞).
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Chapter 2

Tensors

Now that we’re familiar with vector spaces we can finally approach our main subject,
tensors. We’ll give the modern component-free definition, from which will follow the
usual transformation laws that used to be the definition.

From here on out we will employ the Einstein summation convention, which is
that whenever an index is repeated in an expression, once as a superscript and once
as a subscript, then summation over that index is implied. Thus an expression like
v =

∑n
i=1 v

iei becomes v = viei. We’ll comment on this convention in section 2.2.

2.1 Definition and Examples

A tensor of type (r, s) on a vector space V is a C-valued function T on

V × . . .× V︸ ︷︷ ︸
r times

×V ∗ × . . .× V ∗︸ ︷︷ ︸
s times

(2.1)

which is linear in each argument, i.e.

T (v1 + cw, v2, . . . , vr, f1, . . . , fs) = T (v1, . . . , vr, f1, . . . , fs) + cT (w, v2, . . . , f1, . . . , fs)
(2.2)

and similarly for all the other arguments. This property is called multilinearity. Note
that dual vectors are (1, 0) tensors, and that vectors can be viewed as (0, 1) tensors
as follows:

v(f) ≡ f(v) where v ∈ V, f ∈ V ∗. (2.3)

Similarly, linear operators can be viewed as (1, 1) tensors as

A(v, f) ≡ f(Av). (2.4)
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We take (0, 0) tensors to be scalars, as a matter of convention. The reader will show
in exercise 2.1 below that the set of all tensors of type (r, s) on a vector space V ,
denoted T r

s (V ) or just T r
s , form a vector space. This should not come as much

of a surprise since we already know that vectors, dual vectors and linear operators
all form vector spaces. Also, just as linearity implies that dual vectors and linear
operators are determined by their values on the basis vectors, multilinearity implies
the same thing for general tensors. To see this, let {ei}i=1...n be a basis for V and
{ei}i=1...n the corresponding dual basis. Then, denoting the ith component of the
vector vp as vip and the jth component of the dual vector fq as fqj, we have (by
repeated application of multilinearity)

T (v1, . . . , vr, f1, . . . , fs) = vi11 . . . v
ir
r f1j1 . . . fsjsT (ei1 , . . . , eir , e

j1 , . . . , ejs) (2.5)

≡ vi11 . . . v
ir
r f1j1 . . . fsjsT

j1...js
i1,...,ir

(2.6)

where, as before, the numbers

T j1...js
i1,...,ir

≡ T (ei1 , . . . , eir , e
j1 , . . . , ejr) (2.7)

are referred to as the components of T in the basis {ei}i=1...n. The reader should
check that this definition of the components of a tensor, when applied to vectors,
dual vectors, and linear operators, agrees with the definitions given earlier. Also note
that (2.7) gives us a concrete way to think about the components of tensors: they
are the values of the tensor on the basis vectors.

Exercise 2.1 By choosing suitable definitions of addition and scalar multiplication, show
that T rs (V ) is a vector space.

If we have a non-degenerate bilinear form on V , then we may change the type
of T by precomposing with the map L or L−1. If T is of type (1,1) with compo-
nents T j

i , for instance, then we may turn it into a tensor T̃ of type (2,0) by defining
T̃ (v, w) = T (v, L(w)). This corresponds to lowering the second index, and we write
the components of T̃ as Tij, omitting the tilde since the fact that we lowered the
second index implies that we precomposed with L. This is in accord with the con-
ventions in relativity, where given a vector v ∈ R4 we write vµ for the components of
ṽ when we should really write ṽµ. From this point on, if we have a non-degenerate
bilinear form on a vector space then we permit ourselves to raise and lower indices
at will and without comment. In such a situation we often don’t discuss the type of
a tensor, speaking instead of its rank, equal to r+ s, which obviously doesn’t change
as we raise and lower indices.
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Example 2.1 Linear operators in quantum mechanics

Thinking about linear operators as (1, 1) tensors may seem a bit strange, but in fact
this is what one does in quantum mechanics all the time! Given an operator H on
a quantum mechanical Hilbert space spanned by orthonormal vectors {ei} (which in
Dirac notation we would write as {|i〉} ), we usually write H|i〉 for H(ei), 〈j|i〉 for
ẽj(ei) = (ej, ei), and 〈j|H|i〉 for (ej, Hei). Thus, (2.4) would tell us that (using basis
vectors instead of arbitrary vectors)

H j
i = H(ei, e

j) (2.8)

= ej(Hei) (2.9)

= 〈j|H|i〉 (2.10)

where we converted to Dirac notation in the last equality to obtain the familiar
quantum mechanical expression for the components of a linear operator. These
components are often referred to as matrix elements, since when we write operators
as matrices the elements of the matrices are just the components arranged in a
particular fashion, as in (1.26).

Example 2.2 The Moment of Inertia Tensor

The moment of inertia tensor, denoted I, is the symmetric (2,0) tensor which, when
evaluated on the angular velocity vector, yields the kinetic energy of a rigid body,
i.e.

1

2
I(ω, ω) = KE (2.11)

Alternatively we can raise an index on I and define it to be the linear operator which
eats the angular velocity and spits out the angular momentum, i.e.

L = Iω. (2.12)

(2.11) and (2.12) are most often seen in components (referred to a cartesian basis),
where they read

KE = [ω]T [I][ω] (2.13)

[L] = [I][ω]. (2.14)

Note that since we raise and lower indices with an inner product and usually use
orthornormal bases, the components of I when viewed as a (2,0) tensor and when
viewed as a (1,1) tensor are the same, cf. exercise 1.17.
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Example 2.3 Metric Tensors

We met the Euclidean metric on Rn in example 1.17 and the Minkowski metric on
R4 in example 1.19, and it’s easy to verify that both are (2,0) tensors (why isn’t
the Hermitian scalar product of example 1.47 included?). We also have the inverse
metrics, defined in Problem 4 of Chapter 1, and the reader can verify that these are
(0,2) tensors.

Exercise 2.2 Show that for a metric g on V ,

g ji = δ ji , (2.15)

so the (1, 1) tensor associated to g (via g!) is just the identity operator.

2.2 Change of Basis

Now we are in a position to derive the usual transformation laws that historically
were taken as the definition of a tensor. Suppose we have a vector space V and two
bases for V , B = {ei}i=1...n and B′ = {ei′}i=1...n. Since B is a basis, each of the ei′ can
be expressed as ei′ = Aji′ ej for some numbers Aji′ . The same logic dictates that there

exist numbers Aj
′

i (note that here the upper index is primed) such that ei = Aj
′

i ej′ ,
and since

ei = Aj
′

i ej′ = Aj
′

i A
k
j′ek (2.16)

we must have
Aj

′

i A
k
j′ = δki . (2.17)

Considering (2.16) with the primed and unprimed indices switched also yields

Aji′A
k′

j = δk
′

i′ , (2.18)

so, in a way, Aj
′

i and Aji′ are inverses of each other. Notice that Aji′ and Aj
′

i are
not the components of tensors, as their indices refer to different bases. How do the
corresponding dual bases transform? Let {ei}i=1...n and {ei′}i=1...n be the bases dual
to B and B′ . Then the components of ei

′
with respect to {ei}i=1...n are

ei
′
(ej) = ei

′
(Ak

′

j ek′) = Ak
′

j δ
i′

k′ = Ai
′

j , (2.19)

i.e.
ei

′
= Ai

′

j e
j. (2.20)
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Likewise,
ei = Aij′e

j′ . (2.21)

Notice how well the Einstein Summation convention and our convention for priming
indices work together in the transformation laws. Now we are ready to see how the
components of a general (r, s) tensor T transform:

T
j′1...j

′
s

i′1,...,i
′
r

= T (ei′1 , . . . , ei′r , e
j′1 , . . . , ej

′
s) (2.22)

= T (Ak1i′1
ek1 , . . . , A

kr

i′r
ekr , A

j′1
l1
el1 , . . . , A

j′s
ls
els) (2.23)

= Ak1i′1
. . . Akr

i′r
A
j′1
l1
. . . A

j′s
ls
T (ek1 , . . . , ekr , e

l1 , . . . , els) (2.24)

= Ak1i′1
. . . Akr

i′r
A
j′1
l1
. . . A

j′s
ls
T l1...ls
k1...kr

. (2.25)

(2.25) is the standard tensor transformation law, which is taken as the definition of
a tensor in much of the physics literature; here we have derived it as a consequence
of our definition of a tensor as a multilinear function on V and V ∗. The two are
equivalent, however, as the reader will check in exercise 2.3 below. With the general
transformation law in hand, we’ll now look at specific types of tensors and derive their
matrix transformation laws; to this end, it will be useful to introduce the matrices

A =


A1′

1 A1′
2 . . . A1′

n

A2′
1 A2′

2 . . . A2′
n

...
...

...
...

An
′

1 An
′

2′ . . . An
′
n

 , A−1 =


A1

1′ A1
2′ . . . A1

n′

A2
1′ A2

2′ . . . A2
n′

...
...

...
...

An1′ An2′ . . . Ann′

 , (2.26)

which by virtue of (2.17) and (2.18) satisfy

AA−1 = A−1A = I (2.27)

as our notation suggests.

Exercise 2.3 Consider a function which assigns to a basis {ei}i=1...n the set of numbers
{T l1...ls

k1...kr
} which transform according to (2.25) under a change of basis. Show that

this defines a multilinear function T of type (r, s) on V , and be sure to check that your
definition is basis independent (i.e. that the value of T does not depend on which basis
{ei}i=1...n you choose).
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Example 2.4 Vectors and Dual Vectors

Given a vector v (considered as a (1, 0) form as per (2.3)), (2.25) tell us that its
components transform as

vi
′
= Ai

′

j v
j (2.28)

while the components of a dual vector f transform as

fi′ = Aji′fj. (2.29)

Notice that the components of v transform with the Ai
′
j whereas the basis vectors

transform with the Aji′ , so the components of a vector obey the law opposite (‘contra’)
to the basis vectors. This is the origin of the term ‘contravariant’. Note also that the
components of a dual vector transform in the same way as the basis vectors, hence
the term ‘covariant’. It makes sense that the basis vectors and the components of
a vector should transform oppositely; v exists independently of any basis for V and
shouldn’t change under a change of basis, so if the ei change one way the vi should
change oppositely. Similar remarks apply to dual vectors.

Incidentally, we can now explain a little bit more about the Einstein summation
convention. We knew ahead of time that the components of dual vectors would
transform like basis vectors, so we gave them both lower indices. We also knew that
the components of vectors would transform like dual basis vectors, so we gave them
both upper indices. Since the two transformation laws are opposite, we know (see
exercise 2.6 below) that a summation over an upper index and lower index will yield
an object that does not transform at all, so the summation represents an object or
a process that doesn’t depend upon a choice of basis. For instance, the expression
viei represents the vector v which is defined without reference to any basis, and
the expression fiv

i is just f(v), the action of the functional f on the vector v, also
defined without reference to any basis. Processes such as these are so important and
ubiquitous that it becomes very convenient to omit the summation sign for repeated
upper and lower indices, and we thus have the summation convention.

In terms of matrices, we can write (2.28) and (2.29) as

[v]B′ = A[v]B (2.30)

[f ]B′ = A−1T [f ]B (2.31)

where the superscript T again denotes the transpose of a matrix. The reader showed
in exercise 1.17 that if we have an inner product (· , ·) on a real vector space V and an
orthornormal basis {ei}i=1...n then the components of vectors and their corresponding
dual vectors are identical, which is why we were able to ignore the distinction between
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them for so long. (2.30) and (2.31) seem to contradict this, however, since it looks
like the components of dual vectors transform very differently from the components
of vectors. How do we explain this? Well, if we change from one orthonormal basis
to another, we have

δi′j′ = (ei′ , ej′) = Aki′A
l
j′(ek, el) =

n∑
k=1

Aki′A
k
j′ (2.32)

which in matrices reads
A−1TA−1 = I (2.33)

so we must have
A−1T = A⇐⇒ A−1 = AT . (2.34)

Such matrices are known as orthogonal matrices, and we see here that a transforma-
tion from one orthornormal basis to another is always implemented by an orthogonal
matrix.1 For such matrices (2.30) and (2.31) are identical, resolving our contradic-
tion.

Incidentally, for a complex inner product space the reader will show that orthonor-
mal basis changes are implemented by matrices satisfying A−1 = A†. Such matrices
are known as unitary matrices and should be familiar from quantum mechanics.

Exercise 2.4 Show that for any invertible matrix A, (A−1)T = (AT )−1, justifying the
sloppiness of our notation above.

Exercise 2.5 Show that for a complex inner product space V , the matrix A implementing
an orthonormal change of basis satisfies A−1 = A†.

Exercise 2.6 Show that f(v) = f ivi = [f ]T [v] is invariant under a change of basis, as
it should be. Prove this using the matrix transformation laws, i.e. show that [f ]TB [v]B =
[f ]TB′ [v]B′ for any B,B′.

Example 2.5 Linear Operators

We already noted that linear operators can be viewed as (1,1) tensors as per (2.4).
(2.25) then tells us that, for a linear operator T on V ,

T j′

i′ = Aki′A
j′

l T
l

k (2.35)

1See the Problems for more on orthogonal matrices.
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which in matrix form reads
[T ]B′ = A[T ]BA

−1 (2.36)

which is the familiar similarity transformation of matrices. This, incidentally, allows
us to extend the trace functional from n× n matrices to linear operators as follows:
Given T ∈ T (V ) and a basis B for V , define the trace of T as

Tr(T ) ≡ Tr([T ]B). (2.37)

The reader can then use (2.36) to show (see exercise 2.9) that Tr(T ) does not depend
on the choice of basis B.

Exercise 2.7 Show that for v ∈ V, f ∈ V ∗, T a linear operator on V, f(Tv) = [f ]T [T ][v]
is invariant under a change of basis. Use the matrix transformation laws.

Exercise 2.8 Let B = {x, y, z}, B′ = {x+ iy, z, x− iy} be bases for H1(R3), and consider
the operator Lz for which matrix expressions were found with respect to both bases in
example 1.15. Find the numbers Ai

′
j and Aji′ and use these, along with (2.36), to obtain

[Lz]B′ from [Lz]B.

Exercise 2.9 Show that (2.36) implies that Tr([T ]B) does not depend on the choice of
basis B, so that Tr(T ) is well-defined.

Example 2.6 (2,0) Tensors

(2,0) tensors g, which include important examples such as the Minkowski metric and
the Euclidean metric, transform as follows according to (2.25):

gi′j′ = Aki′A
l
j′gkl (2.38)

or in matrix form
[g]B′ = A−1T [g]B A

−1. (2.39)

Notice that if g is an inner product and B and B′ are orthonormal bases then
[g]B′ = [g]B = I and (2.39) becomes

I = A−1TA−1, (2.40)

again telling us that A must be orthogonal. Also note that if A is orthogonal, (2.39)
is identical to (2.36), so we don’t have to distinguish between metric tensors and
linear operators (as most of us haven’t in the past!). In the case of the Minkowski
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metric η we aren’t dealing with an inner product but we do have orthonormal bases,
with respect to which2 η takes the form

[η] =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.41)

so if we are changing from one orthonormal basis to another we have
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = A−1T


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

A−1 (2.42)

or equivalently 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = AT


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

A. (2.43)

Matrices A satisfying (2.43) are known as Lorentz Transformations. Notice that
these matrices are not quite orthogonal, so the components of vectors will transform
slightly differently than those of dual vectors under these transformations. This is
in contrast to the case of Rn with a positive-definite metric, where if we go from
one orthonormal basis to another then the components of vectors and dual vectors
transform identically as the reader showed in exercise 1.17.

Exercise 2.10 As in previous exercises, show using the matrix transformation laws that
g(v, w) = [w]T [g][v] is invariant under a change of basis.

Before we conclude this section, we should remark that when we said that the
Aji′ were not the components of a tensor, we were lying a little; there is a tensor
lurking around, namely the linear operator U that takes the old basis vectors into
the new, i.e. U(ei) = ei′ ∀ i (the action of U on an arbitrary vector is then given by
expanding that vector in the basis B and using linearity). What are the components
of this tensor? Well, in the old basis B we have

U j
i = U(ei, e

j) = ej(Uei) = ej(ei′) = ej(Aki′ek) = Aji′ (2.44)

2We assume here that the basis vector et satisfying η(et, et) = −1 is the 4th vector in the basis,
which isn’t necessary but is somewhat conventional in physics.
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so the Aji′ actually are the components of a tensor! Why did we lie, then? Well,
the approach we have been taking so far is to try and think about things in a basis-
independent way, and although U is a well-defined linear operator, its definition
depends entirely on the two bases we’ve chosen, so we may as well work directly with
the numbers that relate the bases. Also, using one primed index and one unprimed
index makes it easy to remember transformation laws like (2.20) and (2.21) but is
not consistent with our notation for the components of tensors.

If we write out the components of U as a matrix, the reader should verify that

[ei′ ]B = [U ]B[ei]B = A−1[ei]B (2.45)

which should be compared to (2.30). (2.45) is called an active transformation, since
we use the matrix A (or, rather, its inverse) to change one vector into another,
namely ei into ei′ . (2.30), on the other hand, is called a passive transformation, since
we use the matrix A not to change the vector v but rather to change the basis which
v is referred to, hence changing its components. The notation in most physics texts
is not as explicit as ours; one usually sees matrix equations like

r′ = Ar (2.46)

for both passive and active transformations, and one must rely on context to figure
out how the equation is to be interpreted. In the active case, one considers the
coordinate system fixed and and interprets the matrix A as taking the physical
vector r into a new vector r′, where the components of both are expressed in the
same coordinate system. In the passive case, the physical vector r doesn’t change
but the basis does, so one interprets the matrix A as taking the components of r in
the old coordinate system and giving back the components of the same vector r in
the new (primed) coordinate system. Notice that in the active case the prime refers
to a new vector, and in the passive case to a new coordinate system.

Passive transformations are probably the ones encountered most often in classical
physics, since a change of cartesian coordinates induces a passive transformation.
Active transformations do crop up, though, especially in the case of rigid body
motion. In this scenario, one specifies the orientation of a rigid body by the time-
dependent orthogonal basis transformation A(t) which relates the space frame K ′

to the body frame K(t) (we use here the notation of example 1.12). As we saw
above, there corresponds to the time-dependent matrix A(t) a time-dependent linear
operator U(t) which satisfies U(t)(ei′) = ei(t). If K and K ′ were coincident at t = 0
and r0 is the position vector of a point p of the rigid body at that time, then the
position of p at a later time is just r(t) = U(t)r0, which as a matrix equation in K ′
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would read
[r(t)]K′ = A(t)[r0]K′ (2.47)

or in more common and less precise notation,

r(t) = A(t)r0. (2.48)

In other words, the position of a specific point on the rigid body at an arbitrary time
t is given by the active transformation corresponding to the matrix A(t).

The duality between passive and active transformations is also present in quantum
mechanics. In the Schrodinger picture, one considers observables like the momentum
or position operator as acting on the state ket while the basis kets remain fixed.
This is the active viewpoint. In the Heisenberg picture, however, one considers the
state ket to be fixed and considers the observables to be time-dependent (recall that
(1.21) is the equation of motion for these operators). Since the operators are time-
dependent, their eigenvectors (which form a basis3) are time-dependent as well, so
this picture is the passive one in which the vectors don’t change but the basis does.
Just as an equation like (2.46) can be interpreted in both the active and passive
sense, a quantum mechanical equation like

< x̂(t) > = 〈ψ| (U †x̂ U ) |ψ〉 (2.49)

= (〈ψ|U †) x̂ (U |ψ〉), (2.50)

where U is the time-evolution operator for time t, can also be interpreted in two
ways: in the active sense of (2.50), in which the U ’s act on the vectors and change
them into new vectors, and in the passive sense of (2.49), where the U ’s act on the
operator x̂ by a similarity transformation to turn it into a new operator, x̂(t).

2.3 The Tensor Product - Definition and Properties

One of the most basic operations with tensors, again commonplace in physics but
often unacknowledged (or, at best, dealt with in an ad-hoc fashion) is that of the
tensor product. Before giving the precise definition, which takes a little getting used
to, we give a rough, heuristic description. Given two vector spaces V and W (over
the same set of scalars C), we would like to construct a product space, which we
denote V ⊗ W , whose elements are in some sense products of vectors v ∈ V and

3For details on why the eigenvectors of hermitian operators form a basis, at least in the finite-
dimensional case, see [HK].
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w ∈ W . We denote these products by v ⊗ w. This product, like any respectable
product, should be bilinear in the sense that

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2. (2.51)

Given this property, the product of any two arbitrary vectors v and w can then be
expanded in terms of bases {ei}i=1...n and {fj}j=1...m for V and W as

v ⊗ w = (viei)⊗ (wjfj) (2.52)

= viwjei ⊗ fj (2.53)

so {ei ⊗ fj}, i = 1 . . . n, j = 1 . . .m should be a basis for V ⊗ W , which would
then have dimension nm. Thus the basis for the product space would be just the
product of the basis vectors, and the dimension of the product space would be just
the product of the dimensions.

Now we make this precise. Given two vector spaces V and W , we define their
tensor product V ⊗W to be the set of all C-valued bilinear functions on V ∗ ×W ∗.
Such functions do form a vector space, as the reader can easily check. This definition
may seem unexpected or counterintuitive at first, but the reader will see that this
definition does yield the vector space described above. Now, given vectors v ∈ V, w ∈
W , we define the tensor product of v and w, written v ⊗ w, to be the element of
V ⊗W defined as follows:

(v ⊗ w)(h, g) ≡ v(h)w(g) ∀ h∈V ∗, g∈W ∗. (2.54)

The bilinearity of the tensor product is immediate and the reader can probably verify
it without writing anything down: just check that both sides of (2.51) are equal when
evaluated on any pair of dual vectors. To prove that {ei⊗fj}, i = 1 . . . n, j = 1 . . .m
is a basis for V ⊗W , let {ei}i=1...n, {f j}i=1...m be the corresponding dual bases and
consider an arbitrary T ∈ V ⊗W. Using bilinearity,

T (h, g) = higjT (ei, f j) = higjT
ij (2.55)

where T ij ≡ T (ei, f j). If we consider the expression T ijei ⊗ fj, then

(T ijei ⊗ fj)(e
k, f l) = T ijei(e

k)fj(f
l) (2.56)

= T ijδ ki δ
l
j (2.57)

= T kl (2.58)
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so T ijei ⊗ fj agrees with T on basis vectors, hence on all vectors by bilinearity, so
T = T ijei ⊗ fj. Since T was an arbitrary element of V ⊗W , V ⊗W = Span {ei ⊗ fj}.
Furthermore,the ei ⊗ fj are linearly independent as the reader should check, so
{ei ⊗ fj} is actually a basis for V ⊗W and V ⊗W thus has dimension mn.

The tensor product has a couple of important properties besides bilinearity. First,
it commutes with taking duals, that is

(V ⊗W )∗ = V ∗ ⊗W ∗. (2.59)

Second, the tensor product it is associative, i.e. for vector spaces Vi, i = 1, 2, 3,

(V1 ⊗ V2)⊗ V3 = V1 ⊗ (V2 ⊗ V3). (2.60)

This property allows us to drop the parentheses and write expressions like V1⊗. . .⊗Vn
without ambiguity. One can think of V1⊗ . . .⊗Vn as the set of C-valued multilinear
functions on V ∗

1 × . . .× V ∗
n . Verifying these two properties is somewhat tedious and

the reader is referred to [W] for proofs.

Exercise 2.11 If {ei}, {fj} and {gk} are bases for V1, V2 and V3 respectively, convince
yourself that {ei⊗fj⊗gk} is a basis for V1⊗V2⊗V3, and hence that dim V1⊗V2⊗V3 = n1n2n3

where dim Vi = ni. Extend the above to n-fold tensor products.

2.4 Tensor Products of V and V ∗

In the previous section we defined the tensor product for two arbitrary vector spaces
V and W . Often, though, we’ll be interested in just the iterated tensor product of a
vector space and its dual, i.e. in tensor products of the form

V ∗ ⊗ . . . .⊗ V ∗︸ ︷︷ ︸
r times

⊗V ⊗ . . .⊗ V︸ ︷︷ ︸
s times

. (2.61)

This space is of particular interest because it is actually identical to T r
s ! From the

previous section we know that the vector space in (2.61) can be interpreted as the
set of multilinear functions on

V × . . .× V︸ ︷︷ ︸
r times

×V ∗ × . . .× V ∗︸ ︷︷ ︸
s times

, (2.62)

but these functions are exactly T r
s ! Since the space in (2.61) has basis Brs =

{ei1 ⊗ . . . ⊗ eir ⊗ ej1 ⊗ . . . ⊗ ejs}, we can conclude that Brs is a basis for T r
s . In

fact, we claim that if T ∈ T r
s has components T j1...js

i1...ir
, then

T = T j1...js
i1...ir

ei1 ⊗ . . .⊗ eir ⊗ ej1 ⊗ . . .⊗ ejs (2.63)
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is the expansion of T in the basis Brs . To prove this, we just need to check that both
sides agree when evaluated on an arbitrary set of basis vectors; on the left hand side
we get T (ei1 , . . . , eir , e

j1 , . . . , ejs) = T j1...js
i1,...,ir

by definition, and on the right hand
side we have

(T l1...ls
k1...kr

ek1 ⊗ . . .⊗ ekr ⊗ el1 ⊗ . . .⊗ els)(ei1 , . . . , eir , e
j1 . . . , ejs)

= T l1...ls
k1...kr

ek1(ei1) . . . e
kr(eir)el1(e

j1) . . . els(e
js)

= T l1...ls
k1...kr

δk1i1 . . . δ
kr
ir
δj1l1 . . . δ

js
ls

= T j1...js
i1,...,ir

(2.64)

so our claim is true. Thus, for instance, a (2, 0) tensor like the Minkowski metric can
be written as η = ηµνe

µ ⊗ eν . Also, a tensor product like f ⊗ g = figje
i ⊗ ej ∈ T 2

0

thus has components (f ⊗ g)ij = figj. Notice that we now have two ways of thinking
about components: either as the values of the tensor on sets of basis vectors (as in
(2.7)) or as the expansion coefficients in the given basis (as in (2.63)). This duplicity
of perspective was pointed out in the case of vectors under (1.42), and it’s essential
that the reader be comfortable thinking about components in either way.

Exercise 2.12 Compute the dimension of T rs .

Exercise 2.13 Let T1 and T2 be tensors of type (r1, s1) and (r2, s2) respectively on a
vector space V . Show that T1 ⊗ T2 can be viewed as an (r1 + r2, s1 + s2) tensor, so that
the tensor product of two tensors is again a tensor, justifying the nomenclature.

One important operation on tensors which we are now in a position to discuss is
that of contraction, which is the generalization of the trace functional to tensors of
arbitrary rank : Given T ∈ T r

s (V ) with expansion

T = T j1...js
i1...ir

ei1 ⊗ . . .⊗ eir ⊗ ej1 ⊗ . . .⊗ ejs (2.65)

we can define a contraction of T to be any (r−1, s−1) tensor resulting from feeding
ei into one of the arguments, ei into another and then summing over i as implied by
the summation convention. For instance, if we feed ei into the rth slot and ei into
the (r + s)th slot and sum, we get the (r − 1, s− 1) tensor T̃ defined as

T̃ (v1, . . . , vr−1, f1, . . . , fs−1) ≡ T (v1, . . . , vr−1, ei, f1, . . . , fs−1, e
i). (2.66)

The reader may be suspicious that T̃ depends on our choice of basis but exercise 2.14
below will disabuse him of that. Notice that the components of T̃ are

T̃
j1...js−1

i1...ir−1
= T

j1...js−1l
i1...ir−1l

. (2.67)
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Similar contractions can be performed on any two arguments of T provided one argu-
ment eats vectors and the other dual vectors. In terms of components, a contraction
can be taken with respect to any pair of indices provided that one is covariant and
the other contravariant. Notice that for a linear operator (or (1, 1) tensor) A we have
only one option for contraction: Ã = A i

i = Tr(A). Notice also that if we have two
linear operators A and B then their tensor product A⊗B ∈ T 2

2 has components

(A⊗B) jl
ik = A j

i B
l
k , (2.68)

and contracting on the first and last index gives a (1, 1) tensor AB whose components
are

(AB) j
k = A j

l B
l
k . (2.69)

The reader should check that this tensor is just the composition of A and B, as
our notation suggests. What linear operator do we get if we consider the other
contraction A j

i B
l
j ?

Exercise 2.14 Show that if {ei}i=1...n and {ei′}i=1...n are two arbitrary bases that

T (v1, . . . , vr−1, ei, f1, . . . , fs−1, e
i) = T (v1, . . . , vr−1, ei′ , f1, . . . , fs−1, e

i′) (2.70)

so that contraction is well-defined.

Example 2.7 V ∗ ⊗ V

One of the most important examples of tensor products of the form (2.61) is V ∗⊗V ,
which as we mentioned is the same as T 1

1 , the space of linear operators. How does
this identification work, explicitly? Well, given f ⊗ v ∈ V ∗ ⊗ V , we can define a
linear operator by (f ⊗ v)(w) ≡ f(w)v. More generally, given

T j
i e

i ⊗ ej ∈ V ∗ ⊗ V, (2.71)

we can define a linear operator T by

T (v) = T j
i e

i(v)ej = viT j
i ej (2.72)

which is identical to (1.24). This identification of V ∗ ⊗ V and linear operators is
actually implicit in many quantum mechanical expressions. Let H be a quantum
mechanical Hilbert space and let ψ, φ ∈ H so that L(φ) ∈ H∗. The tensor product of
L(φ) and ψ, which we would write as L(φ)⊗ψ, is written in Dirac notation as |ψ〉〈φ|
(note the transposition of the factors relative to our convention). If we’re given an
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orthonormal basis B = {|i〉}, the expansion (2.71) of an arbitrary operator H can be
written in Dirac notation as

H =
∑
i,j

Hij |j〉〈i|, (2.73)

an expression which may be familiar from advanced quantum mechanics texts.4 In
particular, the identity operator can be written as

I =
∑
i

|i〉〈i|, (2.74)

which is referred to as the resolution of the identity with respect to the basis {|i〉}.
A word about nomenclature: In quantum mechanics and other contexts the tensor

product is often referred to as the direct or outer product. This last term is meant
to distinguish it from the inner product, since both the outer and inner products eat
a dual vector and a vector (strictly speaking the inner product eats 2 vectors, but
remember that with an inner product we may identify vectors and dual vectors) but
the outer product yields a linear operator whereas the inner product yields a scalar.

2.5 Applications of the Tensor Product in Classical

Physics

Example 2.8 Moment of inertia tensor revisited

We took an abstract look at the moment of inertia tensor in example 2.2; now,
armed with the tensor product, we can examine the moment of inertia tensor more
concretely. Consider a rigid body and assume that its center of mass is fixed at a
point O, so that it has only rotational degrees of freedom. Let O be the origin, pick
time-dependent body-fixed axes K = {x̂(t), ŷ(t), ẑ(t)} for E3, and let g denote the
Euclidean metric on E3. Recall that g allows us to define a map L from E3 to E3∗.
Also, let the ith particle in the rigid body have mass mi and position vector ri with
[ri]K = (xi, yi, zi) relative to O, and let r2

i ≡ g(ri, ri). Then the (2, 0) moment of
inertia tensor is given by

I(2,0) =
∑
i

mi(r
2
i g − L(ri)⊗ L(ri)) (2.75)

4We don’t bother here with index positions since most quantum mechanics texts don’t employ
Einstein summation convention, preferring instead to explicitly indicate summation.
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while the (1, 1) tensor reads

I(1,1) =
∑
i

mi(r
2
i I − L(ri)⊗ ri). (2.76)

The reader should check that in components (2.75) reads

Ijk =
∑
i

mi(r
2
i δjk − (ri)j(ri)k). (2.77)

Writing a couple of components explicitly yields

Ixx =
∑
i

mi(y
2
i + z2

i )

Ixy = −
∑
i

mixiyi, (2.78)

expressions which should be familiar from classical mechanics. So long as the basis
is orthonormal, the components I k

j of the (1, 1) tensor in (2.76) will be the same as
for the (2, 0) tensor, as remarked earlier. Note that if we had not used body-fixed
axes, the components of ri (and hence the components of I, by (2.78)) would in
general be time-dependent; this is the main reason for using the body-fixed axes in
computation.

Example 2.9 Maxwell Stress Tensor

In considering the conservation of total momentum (mechanical plus electromag-
netic) in classical electrodynamics one encounters the symmetric rank 2 Maxwell
Stress Tensor, defined in (2, 0) form as 5

T(2,0) = E⊗ E + B⊗B− 1

2
(E · E + B ·B)g (2.79)

where E and B are the dual vector versions of the electric and magnetic field vectors.
T can be interpreted in the following way: T (v, w) gives the rate at which momentum
in the v-direction flows in the w-direction. In components we have

Tij = EiEj +BiBj −
1

2
(E · E + B ·B)δij, (2.80)

which is the expression found in most classical electrodynamics textbooks.

5Here and below we set all physical constants such as c and ε0 equal to 1.
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Example 2.10 The Electromagnetic Field tensor

As the reader has probably seen in discussions of relativistic electrodynamics, the
electric and magnetic field vectors are properly viewed as components of a rank 2
antisymmetric tensor F , the electromagnetic field tensor.6 To write F in component-
free notation requires machinery outside the scope of this text,7 so we settle for its
expression as a matrix in an orthonormal basis, which in (2, 0) form is

[F(2,0)] =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (2.81)

The Lorentz force law
dpµ

dτ
= qF µ

ν v
ν (2.82)

where p = mv is the 4-momentum of a particle, v is its proper velocity and q its
charge, can be rewritten without components as

dp

dτ
= qF(1,1)(v) (2.83)

which just says that the proper force on a particle is given by the action of the field
tensor on the particle’s proper velocity!

2.6 Applications of the Tensor Product in Quan-

tum Physics

In this section we’ll discuss further applications of the tensor product in quantum
mechanics, in particular the oft-unwritten rule that to add degrees of freedom one
should take the tensor product of the corresponding Hilbert spaces. Before we get
to this, however, we must set up a little more machinery and address an issue that
we’ve so far swept under the rug. The issue is that when dealing with spatial degrees
of freedom, as opposed to ‘internal’ degrees of freedom like spin, we often encounter

6In this example and the one above we are actually not dealing with tensors but with tensor
fields, i.e. tensor-valued functions on space and spacetime. For the discussion here, however, we
will ignore the spatial dependence, focusing instead on the tensorial properties.

7One needs the exterior derivative, a generalization of the curl, divergence and gradient operators
from vector calculus. See [SC] for a very readable account.
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Hilbert spaces like L2([−a, a]) and L2(R) which are most conveniently described
by ‘basis’ vectors which are eigenvectors of either the position operator x̂ or the
momentum operator p̂. The trouble with these bases is that they are often non-
denumerably infinite (i.e. can’t be indexed by the integers, unlike all the bases
we’ve worked with so far) and, what’s worse, the ‘basis vectors’ don’t even belong
to the Hilbert space! Consider, for example, L2(R). The position operator x̂ acts on
functions ψ(x) ∈ L2(R) by

x̂ ψ(x) = xψ(x). (2.84)

If we follow the practice of most quantum mechanics texts and treat the Dirac delta
functional δ as L(δ(x)) where δ(x), the ‘Dirac delta function’, is infinite at 0 and 0
elsewhere, the reader can check (see exercise 2.15) that

x̂ δ(x− x0) = x0 δ(x− x0) (2.85)

so that δ(x− x0) is an ‘eigenfunction’ of x̂ with eigenvalue x0 (in Dirac notation we
write the corresponding ket as |x0〉) . The trouble is that, as we saw in example 1.23,
there is no such δ(x) ∈ L2(R)! Furthermore, since the basis {δ(x−x0)}xo∈R is indexed
by R and not some subset of Z, we must expand ψ ∈ L2(R) by integrating instead of
summing. Integration, however, is a limiting procedure and one should really worry
about whether a given integral converges and in what sense it converges. Rectifying
all this in a rigorous manner is outside the scope of this text, unfortunately, but
we do wish to work with these objects, so we content ourselves with the traditional
approach: ignore the fact that the delta functions are not elements of L2(R), work
without discomfort with the basis {δ(x− x0)}x0∈R

8, and fearlessly expand arbitrary
functions ψ in the basis {δ(x− x0)}x0∈R as

ψ(x) =

∫ ∞

−∞
dx′ ψ(x′)δ(x− x′), (2.86)

where the above equation can be interpreted both as the expansion of ψ and just the
definition of the delta function. In Dirac notation (2.86) reads

|ψ〉 =

∫ ∞

−∞
dx′ ψ(x′)|x′〉. (2.87)

Note that we can think of the numbers ψ(x) as the components of |ψ〉 with respect to
the basis {|x〉}x∈R. Alternatively, if we define the inner product of our basis vectors
to be

〈x|x′〉 ≡ δ(x− x′) (2.88)

8Working with the momentum eigenfunctions eipx instead doesn’t help; though these are legiti-
mate functions, they still are not square integrable since

∫∞
−∞ |eipx|2 dx = ∞ !
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as is usually done, then using (2.87) we have

ψ(x) = 〈x|ψ〉 (2.89)

which gives another interpretation of ψ(x). These two interpretations of ψ(x) are
just the ones mentioned below (2.64); that is, the components of a vector can be
interpreted either as expansion coefficients (as in (2.87)), or as the value of a given
dual vector on the vector, as in (2.89).

Exercise 2.15 By considering the integral∫ ∞

−∞
(x̂ δ(x− x0))f(x) dx (2.90)

(where f is an arbitrary square-integrable function), show formally that

x̂ δ(x− x0) = x0 δ(x− x0). (2.91)

Exercise 2.16 Check that {δ(x− x0)}x0∈R satisfies (1.54).

Exercise 2.17 Verify (2.89).

We mentioned in a footnote on the previous page that one could use momentum
eigenfunctions instead of position eigenfunctions as a basis for L2(R). What does
the corresponding change of basis look like?

Example 2.11 The Momentum Representation

As is well known from quantum mechanics, the eigenfunctions of the momentum
operator p̂ = ~

i
d
dx

are the wavefunctions {e i
~px}p∈R, and these wavefunctions form a

basis for L2(R). In fact, the expansion of an arbitrary function ψ ∈ L2(R) in this
basis is just the Fourier expansion of ψ, written

ψ(x) =
1

2π

∫ ∞

−∞
dp φ(p) e

i
~px (2.92)

where the component function φ(p) is known as the Fourier Transform of ψ. One
could in fact work exclusively with φ(p) instead of ψ(x), and recast the operators x̂
and p̂ in terms of their action on φ(p) (see exercise 2.18 below); such an approach
is known as the momentum representation. Now, what does it look like when we
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switch from the postion representation to the momentum representation, i.e. when
we change bases from {δ(x − x0)}xo∈R to {e i

~px}p∈R? Since the basis vectors are
indexed by real numbers p and x0 as opposed to integers i and j, our change of basis
will not be given by a matrix with components Ai

′
j but rather a function A(x0, p),

which by (2.19) and the fact that both bases are orthonormal is given by the inner

product of δ(x − x0) and e
i
~px. In Dirac notation this would be written as 〈x0|p〉,

and we have

A(x0, p) = 〈x0|p〉 =

∫ ∞

−∞
dx δ(x− x0)e

i
~px = e

i
~px0 , (2.93)

a familiar equation. 2

Exercise 2.18 Use (2.92) to show that in the momentum representation, p̂ φ(p) = p φ(p)
and x̂ φ(p) = ~

i
dφ
dp .

The next issue to address is that of linear operators: having constructed a new
Hilbert space H1⊗H2 out of two Hilbert spaces H1 and H2, can we construct linear
operators on H1 ⊗H2 out of the linear operators on H1 and H2? Well, given linear
operators Ai on Hi, i = 1, 2, we can define a linear operator A1⊗A2 on H1⊗H2 by

(A1 ⊗ A2)(v ⊗ w) ≡ (A1v)⊗ (A2w). (2.94)

The reader can check that with this definition, (A⊗B)(C⊗D) = AC⊗BD. In most
quantum mechanical applications either A1 or A2 is the identity, i.e. one considers
operators of the form A1 ⊗ I or I ⊗ A2. These are often abbreviated as A1 and A2

even though they’re acting on H1 ⊗H2.
The last subject we should touch upon is that of vector operators, which are

defined to be sets of operators that transform as three dimensional vectors under
the adjoint action of the total angular momentum operators Ji. That is, a vector
operator is a set of operators {Bi}i=1−3 (often written collectively as B) that satisfies

adJi
(Bj) = [Ji, Bj] = i~εijkBk (2.95)

where εijk is the familiar Levi-Civita symbol. The three dimensional position operator
r̂ = {x̂, ŷ, ẑ}, momentum operator p̂ = {p̂x, p̂y, p̂z}, and orbital angular momentum
operator L = {Lx, Ly, Lz} are all vector operators, as the reader can check.

Exercise 2.19 For spinless particles, J = L = x̂ × p̂. Expressions for the components
may be obtained by expanding the cross product or referencing example 1.15 and exercise
1.8. Use these expressions and the canonical commutation relations [xi, pj ] = −i~δij to
show that x̂,p̂ and L are all vector operators.
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Now we are finally ready to consider some examples, in which we’ll take as an
axiom that adding degrees of freedom is implemented by taking tensor products of
the corresponding Hilbert spaces. The reader will see that this process reproduces
familiar results.

Example 2.12 Addition of translational degrees of freedom

Consider a spinless particle constrained to move in one dimension; the quantum
mechanical Hilbert space for this system is L2(R) with basis {|x〉}x∈R. If we con-
sider a second dimension, call it the y dimension, then this degree of freedom has
its own Hilbert space L2(R) with basis {|y〉}y∈R. If we allow the particle both de-
grees of freedom then the Hilbert space for the system is L2(R)⊗ L2(R), with basis
{|x〉 ⊗ |y〉}x,y∈R. An arbitrary ket |ψ〉 ∈ L2(R)⊗ L2(R) has expansion

|ψ〉 =

∫ ∞

−∞

∫ ∞

−∞
dx dy ψ(x, y) |x〉 ⊗ |y〉 (2.96)

with expansion coefficients ψ(x, y). If we iterate this logic, we get in 3 dimensions

|ψ〉 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dz ψ(x, y, z) |x〉 ⊗ |y〉 ⊗ |z〉. (2.97)

If we rewrite ψ(x, y, z) as ψ(r) and |x〉 ⊗ |y〉 ⊗ |z〉 as |r〉 where r = (x, y, z), then we
have

|ψ〉 =

∫
d3r ψ(r)|r〉 (2.98)

which is the familiar 3D expansion of a ket in terms of position eigenkets. Such a
ket is an element of L2(R)⊗ L2(R)⊗ L2(R), which is also denoted as L2(R3).9

Example 2.13 Two-particle systems

Now consider two spinless particles in three dimensional space, possibly interacting
through some sort of potential. The two-body problem with a 1/r potential is a
classic example of this. The Hilbert space for such a system is then L2(R3)⊗L2(R3),
with basis {|r1〉⊗|r2〉}ri∈R3 . In many textbooks the tensor product symbol is omitted

9L2(R3) is actually defined to be the set of all square integrable functions on R3, i.e. functions
f satisfying ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dz |f |2 <∞. (2.99)

Not too surprisingly, this space turns out to be identical to L2(R)⊗ L2(R)⊗ L2(R).
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and such basis vectors are written as |r1〉 |r2〉 or even |r1, r2〉. A ket |ψ〉 in this Hilbert
space then has expansion

|ψ〉 =

∫
d3r1

∫
d3r2 ψ(r1, r2) |r1, r2〉 (2.100)

which is the familiar expansion of a ket in a two-particle Hilbert space. One can
interpret ψ(r1, r2) as the probability amplitude of finding particle 1 in position r1

and particle 2 in position r2 simultaneously.

Example 2.14 Addition of orbital and spin angular momentum

Now consider a spin s particle in three dimensions. As remarked in example 1.2,
the ket space corresponding to the spin degree of freedom is C2s+1, and one usually
takes a basis {|m〉}−s≤m≤s of Sz eigenvectors with eigenvalue ~m. The total Hilbert
space for this system is L2(R3)⊗C2s+1, and we can take as a basis {|r〉⊗ |m〉} where
r ∈ R3 and −s ≤ m ≤ s. Again, the basis vectors are often written as |r〉|m〉 or even
|r,m〉. An arbitrary ket |ψ〉 then has expansion

|ψ〉 =
s∑

m=−s

∫
d3r ψm(r)|r,m〉 (2.101)

where ψm(r) is the probability of finding the particle at position r and with m~ units
of spin angular momentum in the z-direction. These wavefunctions are sometimes
written in column vector form 

ψs
ψs−1

...
ψ−s+1

ψ−s

 . (2.102)

The total angular momentum operator J is given by L ⊗ I + I ⊗ S where L is the
orbital angular momentum operator. One might wonder why J isn’t given by L⊗S;
there is a good answer to this question, but it requires delving into the (fascinating)
subject of Lie groups and Lie algebras (see [Ha]), which we won’t do here. In the
meantime, the reader can get a partial answer by checking (exercise 2.20 below) that
the operators Li ⊗ Si don’t satisfy the angular momentum commutation relations
whereas the Li ⊗ I + I ⊗ Si do.

55



Exercise 2.20 Check that

[Li ⊗ I + I ⊗ Si, Lj ⊗ I + I ⊗ Sj ] =
3∑

k=1

εijk(Lk ⊗ I + I ⊗ Sk). (2.103)

Also show that

[Li ⊗ Si, Lj ⊗ Sj ] 6=
3∑

k=1

εijkLk ⊗ Sk. (2.104)

Be sure to use the bilinearity of the tensor product carefully.

Example 2.15 Addition of spin angular momentum

Next consider two particles of spin s1 and s2 respectively, fixed in space so that
they have no translational degrees of freedom. The Hilbert space for this system is
C2s1+1 ⊗ C2s2+1, with basis {|m1〉 ⊗ |m2〉} where −si ≤ mi ≤ si, i = 1, 2. Again,
such tensor product kets are usually abbreviated as |m1〉|m2〉 or |m1,m2〉. There are
several important linear operators on C2s1+1 ⊗ C2s2+1 :

S1 ⊗ I Vector spin operator on 1st particle
I ⊗ S2 Vector spin operator on 2nd particle
S ≡ S1 ⊗ I + I ⊗ S2 Total vector spin operator
S2 ≡

∑
i SiSi Total spin squared operator

(Why aren’t S2
1 and S2

2 in our list above?) The vectors |m1,m2〉 are clearly eigen-
vectors of S1z and S2z and hence Sz (we abuse notation as mentioned below (2.95))
but, as the reader will show in exercise 2.21, they are not necessarily eigenvectors of
S2. However, since the Si obey the angular momentum commutation relations (as
the reader can check), the general theory of angular momentum tells us that we can
find a basis for C2s1+1⊗C2s2+1 consisting of eigenvectors of Sz and S2. Furthermore,
it can be shown that the S2 eigenvalues that occur are ~2s(s+ 1) where

|s1 − s2| ≤ s ≤ s1 + s2 (2.105)

and for a given s the possible Sz eigenvalues are m~ where −s ≤ m ≤ s as usual
(See [SA] for details). We will write these basis kets as {|s,m〉} where the above
restrictions on s and m are understood, and where we interpret {|s,m〉} as a state
with total angular momentum equal to ~

√
s(s+ 1) and with m~ units of angular

momentum pointing along the z-axis. Thus we have two natural and useful bases for
C2s1+1 ⊗ C2s2+1: B = {|m1,m2〉} and B′ = {|s,m〉}. What does the transformation
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between these two bases look like? Well, by their definition, the Aji′ relating the
two bases are given by ej(ei′); using s,m collectively in lieu of the primed index and
m1,m2 collectively in lieu of the unprimed index, we have, in Dirac notation,

Am1,m2
s,m = 〈m1,m2|s,m〉. (2.106)

These numbers, the notation for which varies widely throughout the literature, are
known as Clebsch-Gordon Coefficients and methods for computing them can be found
in any standard quantum mechanics textbook.

Let us illustrate the foregoing with an example:

Exercise 2.21 Show that

S2 = S2
1 ⊗ I + I ⊗ S2

2 + 2
∑
i

S1i ⊗ S2i. (2.107)

The right hand side of the above equation is usually abbreviated as S2
1 +S2

2 +2S1 ·S2. Use
this to show that |m1,m2〉 is not generally an eigenvector of S2.

Example 2.16 Entanglement

Consider two Hilbert spaces H1 and H2 and their tensor product H1 ⊗ H2. Only
some of the vectors in H1 ⊗ H2 can be written as ψ ⊗ φ; such vectors are referred
to as separable states or product states. All other vectors must be written as linear
combinations of the form

∑
i ψi ⊗ φi, and these vectors are said to be entangled,

since in this case the measurement of the degrees of freedom represented by H1 will
influence the measurement of the degrees of freedom represented by H2. The classic
example of an entangled state comes from the previous example of two fixed particles
with spin; taking s1 = s2 = 1/2, we write the standard basis for C2 as {|+〉 , |−〉}
and consider the state

|+〉 |−〉 − |−〉 |+〉 . (2.108)

If an observer measure the first particle to be spin up then a measurement of the
second particle’s spin is guaranteed to be spin-down, and vice-versa, so measuring
one part of the system affects what one will measure for the other part. This is the
sense in which the system is entangled. Note that for a product state ψ ⊗ φ such
a statement cannot be made: a particular measurement of the first particle cannot
affect what one measures for the second, since the second particle’s state will be φ
no matter what. The reader will check below that (2.108) is not a product state.

Exercise 2.22 Prove that (2.108) cannot be written as ψ⊗φ for any ψ, φ ∈ C2. Do this by
expanding ψ and φ in the given basis and showing that no choice of expansion coefficients
for ψ and φ will yield (2.108).
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2.7 Symmetric and Antisymmetric Tensors

Given a vector space V there are certain subspaces of T r
0 (V ) and T 0

r (V ) which
are of particular interest: the symmetric and antisymmetric tensors. A symmetric
(r, 0) tensor is an (r, 0) tensor whose value is unaffected by the interchange (or
transposition) of any two of its arguments, i.e.

T (v1, . . . , vi, . . . , vj, . . . , vr) = T (v1, . . . , vj, . . . , vi, . . . , vr) (2.109)

for any i and j. Symmetric (0, r) tensors are defined similarly. The reader can easily
check that the symmetric (r, 0) and (0, r) tensors each form vector spaces, denoted
Sr(V ∗) and Sr(V ) respectively. For T ∈ Sr(V ∗), the symmetry condition implies
that the components Ti1...ir are invariant under the transposition of any two indices,
hence invariant under any rearrangement of the indices (since any rearrangement
can be obtained via successive transpositions), so we may consider the expansion

T = Ti1...ire
i1 ⊗ . . .⊗ eir (2.110)

as a totally symmetric product of dual vectors, hence the notation Sr(V ∗). Similar
remarks apply, of course, to Sr(V ). Notice that for rank 2 tensors, the symmetry
condition implies Tij = Tji so that [T ]B for any B is a symmetric matrix. Also note
that it doesn’t mean anything to say that a linear operator is symmetric, since a linear
operator is a (1, 1) tensor and there is no way of transposing the arguments. One
might find that the matrix of a linear operator is symmetric in a certain basis, but
this won’t necessarily be true in other bases. If we have a non-degenerate Hermitian
form to raise and lower indices then we can, of course, speak of symmetry by turning
our linear operator into a (2, 0) or (0, 2) tensor.

Example 2.17 S2(R2∗)

Consider the set {e1 ⊗ e1, e2 ⊗ e2, e1 ⊗ e2 + e2 ⊗ e1} ⊂ S2(R2∗) where {ei}i=1,2 is the
standard dual basis. The reader can check that this set is linearly independent, and
that any symmetric tensor can be written as

T = T11e
1 ⊗ e1 + T22e

2 ⊗ e2 + T12(e
1 ⊗ e2 + e2 ⊗ e1) (2.111)

so this set is a basis for S2(R2∗). In particular, the Euclidean metric g on R2 can be
written as

g = e1 ⊗ e1 + e2 ⊗ e2. (2.112)

Note that g would not take this simple form in a non-orthonormal basis. 2
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There are many symmetric tensors in physics, almost all of them of rank 2. Many
of them we’ve met already: the Euclidean metric on R3, the Minkowski metric on
R4, the moment of inertia tensor, and the Maxwell stress tensor. The reader should
refer to the examples and check that these are all symmetric tensors.

Exercise 2.23 Let V = Rn with the standard basis B. Convince yourself that

[ei ⊗ ej + ej ⊗ ei]B = Sij (2.113)

where Sij is the symmetric matrix defined in example 1.8.

Next we turn to antisymmetric tensors. An antisymmetric (or alternating) (r, 0)
tensor is one whose value changes sign under transposition of any two of its argu-
ments, i.e.

T (v1, . . . , vi, . . . , vj, . . . , vr) = −T (v1, . . . , vj, . . . , vi, . . . , vr). (2.114)

Again, antisymmetric (0, r) tensors are defined similarly and both sets form vec-
tor spaces, denoted ΛrV ∗ and ΛrV (for r = 1 we define Λ1V ∗ = V ∗ and Λ1V =
V ). Note that (2.114) implies that if any of the vi are equal to each other, then
T (v1, . . . , vr) = 0. In fact, the reader will show in exercise 2.24 below that if {v1, . . . , vr}
is just linearly dependent, then T (v1, . . . , vr) = 0. The reader will also show that if
dim V = n, then the only tensor in ΛrV ∗ and ΛrV for r > n is the 0 tensor.

An important operation on antisymmetric tensors is the wedge product : Given
f, g ∈ V ∗ we define the wedge product of f and g, denoted f ∧ g, to be the antisym-
metric (2, 0) tensor defined by

f ∧ g ≡ f ⊗ g − g ⊗ f. (2.115)

Note that f ∧ g = −g ∧ f , and that f ∧ f = 0. Expanding (2.115) in terms of the ei

gives
f ∧ g = figj(e

i ⊗ ej − ej ⊗ ei) = figj e
i ∧ ej (2.116)

so that {ei ∧ ej}i<j spans all wedge products of dual vectors (note the “i < j”
stipluation, since ei∧ ej and ej ∧ ei are not linearly independent). In fact, the reader
can check that {ei ∧ ej}i<j is linearly independent and spans Λ2V ∗, hence is a basis
for Λ2V ∗. The wedge product can be extended to r-fold products of dual vectors as
follows: given r dual vectors f1, . . . fr, we define their wedge product f1 ∧ . . . ∧ fr to
be the sum of all tensor products of the form fi1 ⊗ . . . ⊗ fir where each term gets
a + or a − sign depending on whether an odd or an even number of transpositions
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of the factors are necessary to obtain it from f1 ⊗ . . .⊗ fr; if the number is odd the
term is assigned −1, if even a +1. Thus,

f1 ∧ f2 = f1 ⊗ f2 − f2 ⊗ f1 (2.117)

f1 ∧ f2 ∧ f3 = f1 ⊗ f2 ⊗ f3 + f2 ⊗ f3 ⊗ f1 + f3 ⊗ f2 ⊗ f1

−f3 ⊗ f2 ⊗ f1 − f2 ⊗ f1 ⊗ f3 − f1 ⊗ f3 ⊗ f2 (2.118)

and so on. The reader should convince himself that {ei1 ∧ . . .∧ eir}i1<...<ir is a basis
for ΛrV ∗. Note that this entire construction can be carried out for vectors as well as
dual vectors. Also note that all the comments about symmetry above example 2.17
apply here as well.

Exercise 2.24 Let T ∈ ΛrV ∗. Show that if {v1, . . . , vr} is a linearly dependent set then
T (v1, . . . , vr) = 0. Use the same logic to show that if {f1, . . . fr} ⊂ V ∗ is linearly dependent,
then f1 ∧ . . . ∧ fr = 0. If dim V = n, show that any set of more than n vectors must be
linearly dependent, so that ΛrV = ΛrV ∗ = 0 for r > n.

Exercise 2.25 Expand the (2,0) Electromagnetic field tensor of (2.81) in the basis {ei∧ej}
where i < j and i, j = 1, 2, 3, 4.

Exercise 2.26 Let dim V = n. Show that the dimension of ΛrV ∗ and ΛrV is
(
n
r

)
= n!

(n−r)! r! .

Example 2.18 Identical particles

In quantum mechanics we often consider systems which contain identical particles,
i.e. particles of the same mass, charge and spin. For instance, we might consider n
non-interacting hydrogen atoms moving in a potential well, or the two electrons of
the helium atom orbiting around the nucleus. In such cases we would assume that
the total Hilbert space Htot would be just the n-fold tensor product of the single
particle Hilbert space H. It turns out, however, that nature doesn’t work that way;
for certain particles (known as bosons) only states in Sn(H) are observed, while for
other particles (known as fermions) only states in ΛnH are observed. All known
particles are either fermions or bosons. This restriction of the total Hilbert space to
either Sn(H) or ΛnH is known as the symmetrization postulate and has far-reaching
consequences. For instance, if we have two fermions, we cannot measure the same
values for a complete set of quantum numbers for both particles, since then the
state would have to include a term of the form |ψ〉 |ψ〉 and thus couldn’t belong to
Λ2H. This fact that two fermions can’t be in the same state is known as the Pauli
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Exclusion Principle. As another example, consider two identical spin 1/2 fermions
fixed in space, so that Htot = Λ2C2. Λ2C2 is one-dimensional with basis vector

|0, 0〉 =

∣∣∣∣12
〉 ∣∣∣∣−1

2

〉
−
∣∣∣∣−1

2

〉 ∣∣∣∣12
〉

(2.119)

where we have used the notation of example 2.15. If we measure S2 or Sz for this
system we will get 0. This is in marked contrast to the case of two distinguishable
spin 1/2 fermions; in this case the Hilbert space is C2 ⊗ C2 and we have additional
possible state kets

|1, 1〉 =

∣∣∣∣12
〉 ∣∣∣∣12

〉
(2.120)

|1, 0〉 =

∣∣∣∣12
〉 ∣∣∣∣−1

2

〉
+

∣∣∣∣−1

2

〉 ∣∣∣∣12
〉

(2.121)

|1,−1〉 =

∣∣∣∣−1

2

〉 ∣∣∣∣−1

2

〉
(2.122)

which yield nonzero values for S2 and Sz. 2

The next two examples are a little more mathematical than physical but they are
necessary for the discussion of pseudovectors below. Hopefully the reader will also
find them of interest in their own right.

Example 2.19 The Levi-Civita tensor

Consider Rn with the standard inner product. Let {ei}i=1...n be an orthonormal basis
for Rn and consider the tensor

ε ≡ e1 ∧ . . . ∧ en ∈ ΛnRn∗. (2.123)

The reader can easily check that

εi1...in =


0 if {i1, . . . , in} contains a repeated index
−1 if {i1, . . . , in} is an odd rearrangement of {1, . . . , n}
+1 if {i1, . . . , in} is an even rearrangement of {1, . . . , n}

(2.124)

For n = 3, the reader can also check that εijk has the same values as the Levi-Civita
symbol (also written as εijk), so the Levi-Civita symbol can really be thought of as
the components (in the standard basis) of an honest tensor, the Levi-Civita tensor!
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Note that ΛnRn∗ is one dimensional, and that ε is the basis for it described under
(2.118).

The reader may object that our construction of ε seems to depend on a choice
of metric and orthonormal basis. The former is true: ε does depend on the metric,
and we make no apologies for that. As to whether it depends on a particular choice
of orthonormal basis, we must do a little bit of investigating; this will require a brief
detour into the subject of determinants.

Exercise 2.27 Check that the ε tensor on R3 satisfies

εijk =


+1 if {ijk} is a cyclic permutation10of {1, 2, 3}
−1 if {ijk} is an anticyclic permutation of {1, 2, 3}
0 otherwise.

(2.125)

Is it true for ε on R4 that εijkl = 1 if {ijkl} is a cyclic permutation of {1, 2, 3, 4}?

Example 2.20 The determinant

The reader has doubtless encountered determinants before, and has probably seen
them defined iteratively; that is, the determinant of a 2×2 square matrix A, denoted
|A|, is defined to be

|A| ≡ A11A22 − A12A21 (2.126)

and then the determinant of a 3× 3 matrix B is defined in terms of this, i.e.

|B| ≡ B11

∣∣∣∣ B22 B23

B32 B33

∣∣∣∣−B12

∣∣∣∣ B21 B23

B31 B33

∣∣∣∣+B13

∣∣∣∣ B21 B22

B31 B32

∣∣∣∣ . (2.127)

This expression is known as the cofactor expansion of the determinant, and is not
unique; one can expand about any row (or column), not necessarily (B11, B12, B13).

In our treatment of the determinant we will take a somewhat more sophisticated
approach.11 Take an n×n matrix A and consider its n columns as n column vectors
in Rn , so that the 1st column vector A1 has ith component Ai1 and so on. Then,
constructing the ε tensor using the standard basis and inner product on Rn, we define
the determinant of A, denoted |A|, to be

|A| ≡ ε(A1, . . . , An) (2.128)

10A cyclic permutation of {1, . . . n} is any rearrangement of {1, . . . , n} obtained by suc-
cessively moving numbers from the beginning of the sequence to the end. That is,
{2, . . . , n, 1}, {3, . . . , n, 1, 2}, and so on are the cyclic permutations of {1, . . . , n}. Anti-cyclic per-
mutations are cyclic permutations of {n, n− 1, . . . , 1}.

11For a complete treatment, however, the reader should consult [HK, Ch. 5].
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or in components

|A| =
∑
i1,...,in

εi1....inA1i1 . . . Anin . (2.129)

The reader should check explicitly that this definition reproduces (2.126) and (2.127)
for n = 2, 3. The reader can also check in the Problems that many of the familiar
properties of determinants (sign change under interchange of columns, invariance
under addition of rows, factoring of scalars) follow quite naturally from the definition
and the multilinearity and antisymmetry of ε. With the determinant in hand we may
now explore to what extent the definition of ε depends on our choice of orthonormal
basis. Consider another orthonormal basis {ei′ = Aji′ej}. If we define an ε′ in terms
of this basis, we find

ε′ = e1
′ ∧ . . . ∧ en′

= A1′

i1
. . . An

′

ine
i1 ∧ . . . ∧ ein

= A1′

i1
. . . An

′

inε
i1...ine1 ∧ . . . ∧ in

= |A|ε (2.130)

where in the 3rd equality we used the fact that if ei1 ∧ . . . ∧ ein doesn’t vanish
it can always be rearranged to give e1 ∧ . . . ∧ en, and the resulting sign change if
any is accounted for by the Levi-Civita symbol. Now since both {ei} and {ei′} are
orthonormal bases, A must be an orthonormal matrix, so we can use the product
rule for determinants |AB| = |A||B| (see the Problems for a simple proof) and the
fact that |AT | = |A| to get

1 = |I| = |AAT | = |A||AT | = |A|2 (2.131)

which implies |A| = ±1. Thus ε′ = ε if the two orthonormal bases used in their
construction are related by an orthogonal transformation A with |A| = 1; such a
transformation is called a rotation12, and two bases related by a rotation, or by any
transformation with |A| > 0, are said to have the same orientation. If two bases
are related by a basis transformation with |A| < 0 then the two bases are said to
have the opposite orientation. We can then define an orientation as a maximal13 set
of bases all having the same orientation, and the reader can show (see Problems)

12No doubt the reader is used to thinking about a rotation as a transformation that preserves
distances and fixes a line in space (the axis of rotation). This definition of a rotation is particular
to R3, since even in R2 a rotation can’t be considered to be “about an axis” since ẑ /∈ R2. For the
equivalence of our general definition and the more intuitive definition in R3, see [Go].

13i.e. could not be made bigger.

63



that Rn has exactly two orientations. In R3 these two orientations are the right
handed bases and the left handed bases. Thus we can say that ε doesn’t depend on a
particular choice of orthonormal basis, but it does depend on a metric and a choice
of orientation, where the orientation chosen is the one determined by the standard
basis.

For orientation changing transformations on R3 one can show that A can be
written as A = A0(−I), where A0 is a rotation and −I is referred to as the inversion
transformation. The inversion transformation plays a key role in the next example.

Example 2.21 Pseudovectors in R3

NOTE: All indices in this example refer to orthonormal bases. The calculations and
results below do not apply to non-orthonormal bases.

A pseudovector (or axial vector) is a tensor on R3 whose components transform
like vectors under rotations but don’t change signs under inversion. Common exam-
ples of pseudovectors are the angular velocity vector ω, as well as all cross products,
such as the angular momentum vector L = r × p. It turns out that pseudovectors
like these are actually elements of Λ2R3 . To show this, we’ll first demonstrate that
elements of Λ2R3 (known as bivectors) transform like pseudovectors, and then we’ll
show why L and ω are naturally interpreted as bivectors.

First of all, what does it mean to say that bivectors in R3 transform ‘like’ vectors?
It means that there exists a 1-1 and onto linear map J from Λ2R3 to R3 such that if
we transform the components of α ∈ Λ2R3 by a rotation first and then apply J , or
apply J and then rotate the components, we get the same thing. Thus J allows us
to identify Λ2R3 with R3, and the fact that J commutes with rotations means that
both those spaces behave ‘the same’ under rotations. The map J is given by

J(α23e2 ∧ e3 + α31e3 ∧ e1 + α12e1 ∧ e2) = α23e1 + α31e2 + α12e3 (2.132)

or in components as

(J(α))i =
1

2
εijkα

jk (2.133)

so J(α) is a contraction of the ε tensor and α. The reader can check that this map is
1-1 and onto; that it is onto actually follows from the fact that it is 1-1, as in exercise
1.5, using the fact that dim Λ2R3 = dim R3 = 3. To show that J commutes with
rotations, we need to show that (letting α̃ ≡ J(α) to clean up the notation)

Ai
′

j α̃
j =

1

2
εi
′

k′l′A
k′

mA
l′

nα
mn. (2.134)
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where A is a rotation. On the left hand side J is applied first followed by a rotation,
and on the right hand side the rotation is done first, followed by J .

We now compute for A orthogonal:

1

2
εi
′

k′l′A
k′

mA
l′

nα
mn =

1

2
εp′k′l′δ

i′p′Ak
′

mA
l′

nα
mn

=
1

2

∑
q

εp′k′l′A
i′

qA
p′

q A
k′

mA
l′

nα
mn

=
1

2

∑
q

εqmn|A|Ai
′

q α
mn

=
1

2
|A|εqmnAi

′

q α
mn

= |A|Ai′q α̃q (2.135)

where in the second equality we used a variant of (2.32) which comes from writing
out AAT = I in components, in the 3rd equality we used the easily verified fact
that εp′k′l′A

p′
q A

k′
mA

l′
n = |A|εqmn, and in the 4th equality we raised an index to resume

use of Einstein summation convention and were able to do so because covariant and
contravariant components are equal in orthonormal bases. Now, for rotations |A| = 1
so in this case (2.135) and (2.134) are identical and α̃ does transform like a vector.
For inversion, however, |A| = | − I| = −1 so (2.135) tells us that the components of
α̃ do not change sign under inversion, as those of an ordinary vector would. Another
way to see this is given in the exercise below.

Exercise 2.28 Use the matrix transformation law for rank 2 tensors (why don’t we have
to specify type?) to show that the components of α don’t change sign under inversion.

Thus pseudovectors are really just bivectors. The next question is, why are cross
products and the angular velocity vector naturally interpreted as bivectors? In the
case of cross products, the answer is simple: given two vectors v, w ∈ R3, their wedge
product v ∧ w looks like (using (2.116))

v ∧ w = (v2w3 − v3w2) e2 ∧ e3 + (v3w1 − v1w3) e3 ∧ e1
+(v1w2 − v2w1) e1 ∧ e2 (2.136)

so comparison with (2.132) shows that v×w = J(v∧w)! So you’ve actually met the
wedge product a long time ago, you just didn’t know it.

What about the angular velocity vector ω?
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Example 2.22 The Angular Velocity Vector

Let K and K ′ be two orthonormal bases for R3 as in example 1.12, with K time-
dependent. One can think of K as representing an accelerated reference frame, or a
frame attached to a rotating rigid body; either way we’ll refer to it as the body frame,
and K ′ as the space frame. Now, given a time-dependent vector v(t) ∈ R3 ∀ t, we’d
like to compare the time-derivatives of v in the two frames. In physics texts this is
usually accomplished via a decomposition(

dv

dt

)
total

=

(
dv

dt

)
body

+

(
dv

dt

)
rotation

(2.137)

where (dv
dt

)total represents the time-derivative of v as ‘seen in’ the fixed inertial frame,
(dv
dt

)body represents the time-derivative of v as ‘seen in’ the rotating or accelerating
frame, and (dv

dt
)rotation represents the difference between the two which is attributable

solely to the acceleration of K, and which involves the angular velocity vector ω. We
will obtain such a decomposition which will make precise the nature of these terms, as
well as providing a proper definition of ω where its bivector nature will be manifest.

Let A be the (time-dependent) matrix of the basis transformation taking K ′ to
K, so that

[v]K′ = A[v]K (2.138)

Then

d

dt
[v]K′ =

dA

dt
[v]K + A

d

dt
[v]K

=
dA

dt
A−1[v]K′ + A

d

dt
[v]K . (2.139)

Now, dA
dt
A−1 is actually an antisymmetric matrix:

0 =
d

dt
(I)

=
d

dt
(AAT )

=
dA

dt
AT + A

dAT

dt

=
dA

dt
AT +

(
dA

dt
AT
)T

(2.140)
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so we can define a bivector ω̃ (note that here the ‘~’ denotes the bivector, not the
vector) whose components in the space frame are given by [ω̃]K′ = dA

dt
A−1. Then we

define the angular velocity vector ω to be

ω ≡ J(ω̃). (2.141)

It follows from this definition that

dA

dt
A−1 =

 0 −ω3′ ω2′

ω3′ 0 −ω1′

−ω2′ ω1′ 0

 (2.142)

(we use primed indices since we’re working with the K ′ components) so then

dA

dt
A−1[v]K′ =

 0 −ω3′ ω2′

ω3′ 0 −ω1′

−ω2′ ω1′ 0

 v1′

v2′

v3′

 (2.143)

=

 ω2′v3′ − ω3′v2′

ω3′v1′ − ω1′v3′

ω1′v2′ − ω2′v1′

 (2.144)

= [ω × v]K′ . (2.145)

If we identify [(
dv

dt

)
total

]
K′

≡ d

dt
[v]K′ (2.146)[(

dv

dt

)
body

]
K′

≡ A
d

dt
[v]K (2.147)

then (2.139) becomes (
dv

dt

)
total

= ω × v +

(
dv

dt

)
body

(2.148)

written in components referred to the space frame. This equation should be familiar
from upper-division mechanics texts, and in our treatment we see that ω arises
naturally as a bivector. Note that we could also write (2.139) in the body frame,
which (as the reader can verify) would then tell us that

[ω̃]K = AT
dA

dt
. (2.149)

Regardless of the frame in which we write (2.137), the reader should spend some
time convincing himself that the identifications (2.146) and (2.147) above really do
embody what we mean by the time derivatives of v as ‘seen in’ the different frames.
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Chapter 2 Problems

1. In this problem we explore the properties of n×n orthogonal matrices. This is
the set of real invertible matrices A satisfying AT = A−1, and is denoted O(n).

a) Is O(n) a subspace of Mn(R) ?

b) Show that the product of two orthogonal matrices is again orthogo-
nal, that the inverse of an orthogonal matrix is again orthogonal, and
that the identity matrix is orthogonal. These properties show that
O(n) is a group, i.e. a set with an associative multiplication operation
and identity element such that the set is closed under multiplication
and every element has a multiplicative inverse.

c) Show that the columns of an orthogonal matrix A, viewed as vectors
in Rn, are mutually orthogonal under the usual inner product. Show
the same for the rows. Show that for an active transformation, i.e.

[ei′ ]B = A[ei]B (2.150)

where B = {ei}i=1...n so that [ei]
T
B = (0, . . . , 1︸︷︷︸

ith slot

, . . . , 0), the columns

of A are the [ei′ ]B. In other words, the components of the new basis
vectors in the old basis are just the columns of A.

d) Show that the orthogonal matrices A with |A| = 1, the rotations,
form a subgroup unto themselves, denoted SO(n). Do the matrices
with |A| = −1 also form a subgroup?

2. Prove the following basic properties of the determinant directly from the def-
inition (2.128). We will restrict our discussion to operations with columns,
though it can be shown that all the corresponding statements for rows are true
as well.

a) Any matrix with a column of zeros has |A| = 0.

b) Multiplying a column by a scalar c multiplies the whole determinant
by c.

c) The determinant changes sign under interchange of any two columns.

d) Adding two columns together, i.e. sending Ai → Ai + Aj for any i
and j, doesn’t change the value of the determinant.
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3. One can extend the definition of determinants from matrices to more general
linear operators as follows: We know that a linear operator T on a vector space
V (equipped with an inner product and orthonormal basis {ei}i=1...n) can be
extended to arbitrary tensor products of V by

T (v1 ⊗ . . .⊗ vp) = (Tv1)⊗ . . .⊗ (Tvp) (2.151)

and thus, since ΛnRn ⊂ Rn ⊗ . . .⊗ Rn︸ ︷︷ ︸
n times

, the action of T extends to ΛnV similarly

by
T (v1 ∧ . . . ∧ vn) = (Tv1) ∧ . . . ∧ (Tvn), vi ∈ V ∀i. (2.152)

Consider then the action of T on the contravariant version of ε, the tensor
ε̃ ≡ e1 ∧ . . . ∧ en ; we know from exercise 2.26 that ΛnV is one dimensional so
that T (ε̃) = (Te1) ∧ . . . ∧ (Ten) is proportional to ε̃, and we define the deter-
minant of T to be this proportionality constant, so that

(Te1) ∧ . . . ∧ (Ten) ≡ |T | e1 ∧ . . . ∧ en. (2.153)

a) Show by expanding the left hand side of (2.153) in components that
this more general definition reduces to the old one of (2.129) in the
case of V = Rn.

b) Use this definition of the determinant to show that for two linear
operators B and C on V ,

|BC| = |B||C|. (2.154)

In particular, this result holds when B and C are square matrices.

c) Use b) to show that the determinant of a matrix is invariant un-
der similarity transformations (see example 2.5). Conclude that we
could have defined the determinant of a linear operator T as the
determinant of its matrix in any basis.
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4. Let V be a vector space V with an inner product and orthonormal basis
{ei}i=1...n. Prove that a linear operator T is invertible if and only if |T | 6= 0, as
follows:

a) Show that T is invertible if and only if {T (ei)}i=1...n is a linearly
independent set (see exercise 1.6 for the ‘if’ part of the statement).

b) Show that |T | 6= 0 if and only if {T (ei)}i=1...n is a linearly independent
set.

5. The determinant of a matrix A in Rn can actually be interpreted as follows:
given the standard basis {ei}i=1...n, we can imagine the standard n-dimensional
cube determined by the points (0, . . . , 1︸︷︷︸

ith slot

, . . . , o) given by the ei and whose

n-dimensional volume is 1. We can then imagine the cube determined by the
Aei; the n-dimensional volume of this parallelepiped is then |A|, where the
sign of the determinant signifies whether or not the orientation of {Aei} is the
same as {ei}. Thus the determinant tells us the oriented volume of the n-cube
determined by {Aei}. Verify this in the cases n = 2, 3, i.e. show that for
n = 2 the parallelogram spanned by {Ae1, Ae2} has oriented area |A|, and that
for n = 3 the three dimensional parallelepiped spanned by {Ae1, Ae2, Ae3}
has oriented volume |A|. Feel free to refer to example 2.21 and to use the
cross product formulas you learned in vector calculus. Note that if A is not
invertible then the Aei are linearly dependent, hence span a space of dimension
less than n and thus yield n-dimensional volume 0, so the geometrical picture
is consistent with the results of the previous problem.

6. Let B be the standard basis for Rn, O the set of all bases related to B by a
basis transformation with |A| > 0, and O′ the set of all bases related to B by
a transformation with |A| < 0.

a) Using what we’ve learned in the preceding problems, show that a
basis transformation matrix A cannot have |A| = 0.

b) O is by definition an orientation. Show that O′ is also an orientation,
and conclude that Rn has exactly two orientations. Note that both
O and O′ contain orthonormal and non-orthonormal bases.

c) For what n is A = −I an orientation-changing transformation?
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Chapter 3

Groups, Lie Groups and Lie
Algebras

In physics we are often interested in how a particular object behaves under a partic-
ular set of transformations; for instance, in the classical physics literature one reads
that a dipole moment transforms like a vector under rotations and a quadropole
moment like a (2nd rank) tensor, and that the electric and magnetic fields trans-
form like vectors under rotations but like a 2nd rank antisymmetric tensor under
Lorentz transformations. Similarly, in quantum mechanics one is often interested in
the“spin” of a ket (which specifies how it transforms under rotations), or its behavior
under the time-reversal or space inversion (parity) transformations. This knowledge
is particularly useful as it leads to the many famous “selection rules” which greatly
simplify evaluation of matrix elements. Transformations are also crucial in quan-
tum mechanics because all physical observables can be considered as “infinitesimal
generators” of particular transformations; e.g., the angular momentum operators
“generate” rotations (as we discussed briefly in Problem 3 of Chapter 1) and the
momentum operator “generates” translations.

Like tensors, this material is usually treated in a somewhat ad-hoc way which
facilitates computation but obscures the underlying mathematical structures. These
underlying structures are known to mathematicians as group theory, Lie theory and
representation theory, and are known collectively to physicists as just “group theory”.
Our aim in this second half of the book is to present the basic facts of this theory
as well as its manifold applications to physics, both to clarify and unify the diverse
phenomena in physics in which it is involved and also to provide a nice application
of what we’ve learned about tensors.

Before we discuss how particular objects transform, however, we must discuss the
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transformations themselves. All the transformations we’ll be interested in share a
few common properties: First, the performance of two successive transformations is
always equivalent to the performance of a single, third transformation (just think of
rotations and how any two successive rotations about two axes can be considered as
a single rotation about a third axis). Second, every transformation has an inverse
which undoes it (in the case of rotations, the inverse to any given rotation is a
rotation about the same axis in the opposite direction). Sets of transformations like
these occur so often in mathematics and physics that they are given a name: groups.

3.1 Groups - Definition and Examples

The definition of a group that we’re about to give may appear somewhat abstract, but
is meant to embody the most important properties of sets of transformations. After
giving the definition and establishing some basic properties, we’ll proceed shortly to
some concrete examples.

A group is a set G together with a multiplication operation, denoted ·, that
satisfies the following axioms:

1. (Closure) g, h ∈ G implies g ·h ∈ G.
2. (Associativity) For g, h, k ∈ G, g ·(h·k) = (g ·h)·k.
3. (Existence of the Identity) There exists an element e ∈ G such that g ·e =

e·g = g ∀g ∈ G.
4. (Existence of Inverses) ∀g ∈ G there exists an element h such that

g ·h = h·g = e.

In the case of transformations, the multiplication operation is obviously just
composition; that is, if R and S are 3-d rotations, for instance, then R ·S is just S
followed by R. Note that we don’t necessarily have R ·S = S ·R for all rotations R
and S; if we did, we would say that the group is commutative (or abelian). If we do
not, as is the case for rotations and most other groups of physical interest, we say
the group is non-commutative (or non-abelian).

There are several important properties of groups that follow almost immediately
from the definition. Firstly, the identity is unique, for if e and f are both elements
satisfying axiom 3 then we have

e = e·f since f is an identity (3.1)

= f since e is an identity. (3.2)
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Secondly, inverses are unique: Let g ∈ G and let h and k both be inverses of g.
Then

g ·h = e (3.3)

so multiplying both sides on the left by k gives

k ·(g ·h) = k,

(k ·g)·h = k by associativity,

e·h = k since k is an inverse of g,

h = k.

We henceforth denote the unique inverse of an element g as g−1.
Thirdly, if g ∈ G and h is merely a right inverse for g, i.e.

g ·h = e, (3.4)

then h is also a left inverse for g and is hence the unique inverse g−1. This is seen as
follows:

h·g = (g−1 ·g)·(h·g)
= (g−1 ·(g ·h))·g by associativity

= (g−1 ·e)·g by (3.4)

= g−1 ·g
= e,

so h = g−1.
The last few properties concern inverses and can be verified immediately by the

reader:

(g−1)−1 = g (3.5)

(g ·h)−1 = h−1 ·g−1 (3.6)

e−1 = e. (3.7)

Exercise 3.1 Prove the cancellation laws for groups, i.e. that

g1 · h = g2 · h ⇒ g1 = g2 (3.8)
h · g1 = h · g2 ⇒ g1 = g2. (3.9)
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Before we get to some examples, we should note that Properties 2 and 3 in the
definition above are usually obviously satisfied and rarely does one bother to check
them explicitly. The important thing in showing that a set is a group is verifying
that it is closed under multiplication and contains all its inverses. Also, as a matter
of notation, from now on we will omit the · when writing a product, and simply write
gh for g ·h.

Example 3.1 SO(2) Special orthogonal group in two dimensions

As the reader may recall from Problem 1 of Chapter 2, SO(2) is defined to be the
set of all real orthogonal 2× 2 matrices with determinant equal to 1 (we remind the
reader that A “orthogonal” means A−1 = AT ). The reader will check in exercise 3.2
that SO(2) is an abelian group and that the general form of an element of SO(2) is(

cos θ − sin θ
sin θ cos θ

)
. (3.10)

The reader will recognize that such a matrix represents a counterclockwise rotation
of θ radians in the x− y plane.

Exercise 3.2 Verify that SO(2) is a group. If the reader has done Problem 1, part d) of
Chapter 2 then he has already done this. Also check that SO(2) is abelian. Next, consider
an arbitrary matrix

A =
(
a b
c d

)
(3.11)

and impose the orthogonality condition, as well as |A| = 1. Show that (3.10) is the most
general solution to these constraints.

Example 3.2 SO(3) Special orthogonal group in three dimensions

This group is defined, just as for SO(2), as the set of all orthogonal 3 × 3 matrices
with determinant equal to one. The reader’s proof that SO(2) is a group should
carry over verbatim to show that SO(3) is a group. As we mentioned in example
2.20, orthogonal matrices with determinant equal to 1 actually represent rotations,
and though this is obvious from (3.10) in the two dimensional case it is not as obvious
in the three dimensional case . We tend to think of three-dimensional rotations as
transformations which preserve distances and fix a line in space (called the axis of
rotation). Do elements of SO(3) do this? To find out, let g be the Euclidean metric
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on R3. The distance between two points x, y ∈ R3 is then |x−y| ≡
√
g(x− y, x− y),

and the statement that R ∈ SO(3) preserves distances means that

|Rx−Ry| = |x− y|. (3.12)

The reader will verify this in exercise 3.3 below. In fact, the reader will prove the
stronger statement that

g(Rx,Ry) = g(x, y) ∀ x, y ∈ R3 (3.13)

which can actually be taken as the definition of an orthogonal matrix. These two
definitions correspond to the active and passive viewpoints of transformations: our
first definition of an orthogonal matrix as one which implements the basis change from
one orthonormal basis to another (and hence satisfies R−1 = RT ) gives the passive
viewpoint, while the second definition, given by (3.13), of orthogonal matrices as
linear operators which preserve an inner product, gives the active viewpoint.

Now what about the axis of rotation? Does each R ∈ SO(3) have one? An axis
of rotation is a line of points that are unaffected by R, so this line actually comprises
a one dimensional eigenspace of R with eigenvalue 1. The question then becomes,
does every R ∈ SO(3) have 1 as an eigenvalue? The answer is yes, as the reader will
show in Problem 1. This fact is known as Euler’s Theorem.

Now that we have convinced ourselves that every R ∈ SO(3) is a rotation (and
these are, in fact, all rotations), can we find a general form for R? As the reader
may know from classical mechanics courses, an arbitrary rotation can be described
in terms of the Euler angles, which tell us how to rotate a given orthonormal basis
into another of the same orientation (or handedness). In classical mechanics texts1,
it is shown that this can be achieved by rotating the given axes by an angle φ around
the original z-axis, then by an angle θ around the new y-axis, and finally by an angle
ψ around the new z-axis. If we take the passive point of view, these three rotations
take the form cosψ sinψ 0

− sinψ cosψ 0
0 0 1

 ,

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (3.14)

so multiplying them together gives a general form for R ∈ SO(3): cosψ cosφ− cos θ sinφ sinψ − sinψ cosφ− cos θ sinφ cosψ sin θ sinφ
cosψ sinφ+ cos θ cosφ sinψ − sinφ sinψ + cos θ cosφ cosψ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ

 .

(3.15)

1such as [Go]
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Exercise 3.3 Assume the standard basis in R3 so that g(x, y) = [x]T [y]. Then use or-
thogonality to show that g(Rx,Ry) = g(x, y). Also, turn the definition around and show
that any linear operator R which satisfies g(Rx,Ry) = g(x, y) ∀x, y ∈ R3 must satisfy
R−1 = RT .

Example 3.3 O(3) Orthogonal group in 3 dimensions

Another transformation of our three dimensional space that is familiar from physics
and that we’ve mentioned before is the inversion transformation, −I, which sends
every vector to minus itself. If we try to add this to the rotations to get a group, we
get the orthogonal group O(3) which is defined to be the set of all 3× 3 orthogonal
matrices R, this time without the condition that the |R| = 1. Of course, as we
pointed out in example 2.20, the orthogonality condition implies that |R| = ±12, so
in going from SO(3) to O(3) we are just adding all the orthogonal matrices with
|R| = −1 (which of course includes −I). The elements with |R| = 1 are sometimes
referred to as proper rotations, and the elements with |R| = −1 as the improper
rotations. The proper and improper rotations are disconnected, in the sense that one
cannot continuously go from matrices with |R| = 1 to matrices with |R| = −1. This
is represented schematically above. One can obtain any of the improper rotations,
however, by multiplying a proper rotation by −I; this is easy to see, for if R is an
improper rotation then −R is a proper rotation which yields R when multiplied by
−I.

Example 3.4 SU(2) Special unitary group in two complex dimensions

This group is defined to be the set of all 2 × 2 complex matrices A which satisfy
|A| = 1 and

A† = A−1. (3.16)

The reader will verify below that SU(2) is a group. The reader will also verify that
a generic element of SU(2) looks like(

α β
−β̄ ᾱ

)
α, β ∈ C, |α|2 + |β|2 = 1. (3.17)

2This fact can be understood geometrically: since orthogonal matrices preserve distances and
angles, they should preserve volumes as well, and as we learned in Problem 5 of Chapter 2 the
determinant measure how volume changes under the action of a linear operator, so any volume
preserving operator should have determinant ±1, where the sign is determined by whether or not
the orientation is reversed.
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We could also use three real parameters with no conditions rather than two complex
parameters with a constraint; one such parametrization is(

ei(ψ+φ)/2 cos θ
2

iei(ψ−φ)/2 sin θ
2

ie−i(ψ−φ)/2 sin θ
2

e−i(ψ+φ)/2 cos θ
2

)
(3.18)

where we have used the same symbols for our parameters as we did for the Euler
angles. This is no accident, as there is a close relationship between SU(2) and SO(3),
which we will discuss in detail later. This relationship underlies the appearance of
SU(2) in quantum mechanics, where rotations are implemented on spin 1/2 particles
by elements of SU(2).

The reader has already checked in exercise 2.5 that matrices satisfying (3.16)
represent transformations between orthonormal bases of a complex vector space. As
with orthogonal groups, however, there is another way to interpret the condition
(3.16); we could define a unitary matrix as one which, when interpreted as a linear
operator on Cn, preserves the hermitian scalar product on Cn, in the sense of (3.20)
below. The reader will check that this condition is equivalent to (3.16), and so
we have a passive and active view of unitary transformations, just as we did for
orthogonal transformations.

Exercise 3.4 Verify that SU(2) satisfies the group axioms. Also, consider an arbitrary
complex matrix (

α β
γ δ

)
(3.19)

and impose the unit determinant and unitary conditions. Show that (3.17) is the most
general solution to these constraints.

Exercise 3.5 Let U ∈ T (Cn) satisfy

(Uv,Uw) = (v, w) ∀v, w ∈ Cn. (3.20)

Assume the standard basis on Cn, and show that this condition is equivalent to

[U ]† = [U ]−1. (3.21)

Example 3.5 SO(3, 1)o The restricted Lorentz group

The restricted Lorentz group SO(3, 1)o is defined to be the set of all 4×4 real matrices
A satisfying |A| = 1, A44 > 1, and

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = AT


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

A. (3.22)
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The reader will verify in problem 2 below that SO(3, 1)o is a group. Where does its
definition come from? Consider R4 with the Minkowski metric. As noted in example
2.6, any matrix satisfying (3.22) represents a transformation from one orthonormal
basis to another, so the component form of the Minkowski metric is unchanged. As
Einstein showed, this condition is precisely the one that guarantees the invariance
of the speed of light under the change of inertial reference frame described by A.
What about the other conditions? A44 > 0 just says that the transformation doesn’t
reverse the direction of time (so that clocks in the new coordinates aren’t running
backwards) and this, together with |A| = 1, implies that A does not reverse the orien-
tation of the space axes. Thus, SO(3, 1)o represents all the changes from one inertial
reference frame to another that don’t reverse the orientation of time or space. These
transformations are known as restricted Lorentz transformations. A transformation
between two reference frames that have parallel axes but may be moving relative to
each other is called a pure Lorentz transformation or boost.

What does a generic restricted Lorentz transformation look like? As with the
previous examples, there is some arbitrariness in our choice of description, but we
can proceed as follows: any restricted Lorentz transformation can be written as the
product of a rotation and a boost3, where a rotation in this context looks like

R′ =

(
1 ~0
~0 R

)
(3.23)

where ~0 stands for a column (on the left) or row (on the top) of three zeros and
R ∈ SO(3). The reader can check that such a matrix is a Lorentz transformation,
so we see that SO(3, 1)o subsumes SO(3). As for the form of an arbitrary boost, the
reader will show later in this book that

L =


u2

x(coshu−1)
u2 + 1 uxuy(coshu−1)

u2

uxuz(coshu−1
u2

ux

u
sinhu

uyux(coshu−1)

u2

u2
y(coshu−1)

u2 + 1 uyuz(coshu−1)

u2

uy

u
sinhu

uzux(coshu−1)
u2

uzuy(coshu−1)

u2

u2
z(coshu−1)

u2 + 1 uz

u
sinhu

ux

u
sinhu uy

u
sinhu uz

u
sinhu coshu

 (3.24)

is an arbitrary boost, where ~u (with u ≡ |~u| ) is a quantity known as the rapidity.

The reader will verify below that ~u is related to the relative velocity ~β between the
frames by

~β =
tanhu

u
~u. (3.25)

3this should be intuitively clear; for a discussion see [Go].
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and that in terms of ~β and γ ≡ (1− β2)−1/2 = coshu, β ≡ |~β|, L takes the form

L =


β2

x(γ−1)
β2 + 1 βxβy(γ−1)

β2

βxβz(γ−1)
β2 βxγ

βyβx(γ−1)

β2

β2
y(γ−1)

β2 + 1 βyβz(γ−1)

β2 βyγ
βzβx(γ−1)

β2

βzβy(γ−1)

β2

β2
z (γ−1)
β2 + 1 βzγ

βxγ βyγ βzγ γ

 . (3.26)

Note that L has three arbitrary parameters so that our arbitrary restricted
Lorentz transformation R′L has six parameters total.

Exercise 3.6 Use L as an passive transformation to obtain new coordinates (x′, y′, z′, t′)
from old by 

x′

y′

z′

t′

 = L


x
y
z
t

 . (3.27)

Show that the origin of the primed frame, defined by x′ = y′ = z′ = 0, moves with velocity
(3.25) relative to the old frame, and substitute this into (3.24) to get (3.26).

Example 3.6 O(3, 1) The extended Lorentz group

In the previous example we restricted our changes of inertial reference frame to those
which preserved the orientation of space and time. This is sufficient in classical
mechanics, but in quantum mechanics we are often interested in the effects of space
and time inversion on the various Hilbert spaces we’re working with. If we add
spatial inversion, also called parity and represented by the matrix

P =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (3.28)

as well as time-reversal, represented by

T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (3.29)

to the restricted Lorentz group, we get the improper or extended Lorentz group
O(3, 1), which is defined by (3.22) with no restrictions on the determinant or A44.
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The reader should verify that P, T ∈ O(3, 1), but P, T /∈ SO(3, 1)o. In fact, |P | =
|T | = −1, which is no accident; as in the case of the orthogonal group, the defining
equation (3.22) restricts the determinant, and the reader can check that (3.22) implies
that |A| = ±1. In this case, however, we have four disconnected components instead
of two! Obviously those matrices with |A| = 1 must be disconnected from those with
|A| = −1, but those which reverse the orientation of the space axes must also be
disconnected from those which do not, and those which reverse the orientation of time
must be disconnected from those which do not. This is represented schematicallly
above. Note that, as in the case of O(3), multiplication by the transformations P
and T take us to and from the various different components.

Example 3.7 SL(2,C) Special linear group in two complex dimensions

SL(2,C) is defined to be the set of all 2 × 2 complex matrices A with |A| = 1. By
now it should be obvious that this set is a group. The general form of A ∈ SL(2,C)
is

A =

(
a b
c d

)
a, b, c, d ∈ C, ad− bc = 1. (3.30)

The unit determinant constraint means that A is determined by three complex pa-
rameters or six real parameters, just as for SO(3, 1)o. This is no coincidence; in fact,
SL(2,C) bears the same relationship to SO(3, 1)o as SU(2) bears to SO(3), in that
SL(2,C) implements restricted Lorentz transformations on spin 1/2 particles! We
will discuss this in detail later, where we will also show that an arbitrary boost is
implemented on a spin 1/2 particle by P̃ ∈ SL(2,C) of the form(

cosh u
2
− uz

u
sinh u

2
− 1
u
(ux − iuy) sinh u

2

− 1
u
(ux + iuy) sinh u

2
cosh u

2
+ uz

u
sinh u

2

)
. (3.31)

This, together with the facts that an arbitrary rotation is implemented by an SU(2)
matrix R̃ of the form (3.18) (note that SU(2) ⊂ SL(2,C), which makes sense since
SO(3, 1)o subsumes SO(3)) and that any Lorentz transformation can be written as
a product of a boost and a rotation, yields the general form R̃P̃ for an element of
SL(2,C) in terms of the same parameters we used for SO(3, 1)o.

Example 3.8 Z2 The group with two elements

Consider the set Z2 ≡ {e, g} with associative multiplication law given by g2 = e
(note that the rest of the possible products are determined by the stipulation that e
is the identity). The reader can easily check that this is a group, in fact an abelian
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group. Though this group is defined in a much more abstract way than the groups
encountered above, we’ll see in the next section that concrete representations of this
group pop up in a few places in physics.

Example 3.9 Sn The symmetric group on n letters

This group does not usually occur explicitly in physics but is intimately tied to per-
mutation symmetry, the physics of identical particles, and much of the mathematics
we discussed in section 2.7. The symmetric group on n letters (also known as the
permutation group), denoted Sn, is defined to be the set of all 1-1 and onto maps of
the set {1, 2, . . . , n} to itself, where the product is just the composition of maps. The
maps are known as permutations. The reader should check that any composition of
permutations is again a permutation and that permutations are invertible, so that Sn
is a group. This verification is simple, and just relies on the fact that permutations
are, by definition, 1-1 and onto.

Any permutation σ is specified by the n numbers σ(i), i = 1 . . . n, and can
conveniently be notated as (

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
. (3.32)

In such a scheme, the identity in S3 would just look like(
1 2 3
1 2 3

)
(3.33)

while the cyclic permutation σ1 given by 1 → 2, 2 → 3, 3 → 1 would look like

σ1 =

(
1 2 3
2 3 1

)
(3.34)

and the transposition σ2 which switches 1 and 2 and leaves 3 alone would look like

σ2 =

(
1 2 3
2 1 3

)
. (3.35)

How do we take products of permutations? Well, the product σ1 · σ2 would take on
the following values:

(σ1 · σ2)(1) = σ1(σ2(1)) = σ1(2) = 3 (3.36)

(σ1 · σ2)(2) = σ1(1) = 2 (3.37)

(σ1 · σ2)(3) = σ1(3) = 1 (3.38)
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so we have

σ1 · σ2 =

(
1 2 3
2 3 1

)
·
(

1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
. (3.39)

The reader should take the time to inspect (3.39) and understand how to take such
a product of permutations without having to write out (3.36)-(3.38).

Though a proper discussion of the applications of Sn to physics must wait until
the next section, we can point out here that if we have an n-fold tensor product
V ⊗ V ⊗ . . .⊗ V of a vector space V , then Sn acts on this by

σ(v1 ⊗ v2 ⊗ . . .⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(n). (3.40)

In the case of n identical particles in quantum mechanics, where the total Hilbert
space is the n-fold tensor product of the single-particle Hilbert space H, this ac-
tion effectively interchanges particles, and we will later restate the symmetrization
postulate from example 2.18 in terms of this action of Sn on H⊗H⊗ . . .⊗H.

3.2 Homomorphism and Isomorphism

In the last section we claimed that there is a close relationship between SU(2) and
SO(3), as well as between SL(2,C) and SO(3, 1)o. We now make this relationship
precise, and show that a similar relationship exists between Sn and Z2. We will also
define what it means for two groups to be ‘the same’, which will then tie into our
abstract discussion of Z2 in the last section.

Given two groups G and H, a homomorphism from G to H is a map φ : G→ H
such that

φ(g1g2) = φ(g1)φ(g2) ∀ g1, g2 ∈ G. (3.41)

Note that the product in the left hand side of (3.41) takes place in G, whereas
the product on the right hand side takes place in H. A homomorphism should be
thought of as a map from one group to another which preserves the multiplicative
structure. Note that φ need not be 1-1 or onto; if it is onto then φ is said to be a
homomorphism onto H, and if in addition it is 1-1 then we say φ is an isomorphism. If
φ is an isomorphism then it is invertible and thus sets up a one-to-one correspondence
which preserves the group structure, so we regard G and H as ‘the same’ group, just
with different labels for the elements, with φ providing the dictionary between the
different labeling schemes.

82



Exercise 3.7 Let φ : G → H be a homomorphism, and let e be the identity in G and e′

the identity in H. Show that

φ(e) = e′ (3.42)
φ(g−1) = φ(g)−1 ∀ g ∈ G. (3.43)

Suppose φ is a homomorphism but not an isomorphism. Is there a way to quantify
how far it is from being an isomorphism? Define the kernel of φ to be the set
K ≡ {g ∈ G|φ(g) = e′} where e′ is the identity in H. In other words, K is the set of
all elements of G that get sent to e′ under φ. If φ is an isomorphism, then K = {e}.
Also, if we have φ(g1) = φ(g2) = h, then

φ(g1g
−1
2 ) = φ(g1)φ(g2)

−1 = hh−1 = e (3.44)

so g1g2 is in the kernel of φ, i.e. g1g
−1
2 = k for some k ∈ K. Multiplying on the

right by g2 then gives g1 = kg2 so we see that any two elements of G that give
the same element of H under φ are related by left multiplication by an element of
K. Conversely, if we are given g ∈ G and φ(g) = h, then for all k ∈ K, φ(kg) =
φ(k)φ(g) = e′φ(g) = φ(g) = h so if we define Kg ≡ {kg| k ∈ K}, then Kg are
precisely those elements (no more, and no less) of G which get sent to h. Thus the
size of K tells us how far φ is from being an isomorphism, and the elements of K
tell us exactly which elements of G will map to a specific element h ∈ H.

Homomorphisms and isomorphisms are ubiquitous in mathematics and occur
frequently in physics, as we’ll see in the examples below.

Example 3.10 SU(2) and SO(3)
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Chapter 3 Problems

1. In this problem we prove Euler’s theorem that any R ∈ SO(3) has an eigenvec-
tor with eigenvalue 1. Recall that if λ is an eigenvalue of R then there exists a
nonzero vector v such that Rv = λv, or (R−λI)v = 0. This means that R−λ
is not invertible, which by Problem 4 of Chapter 2 means that |R − λI| = 0.
The same problem shows that the converse is true, i.e. that if |R − λI| = 0
then R − λI is not invertible, hence there must be some vector v such that
(R − λI)v = 0, or Rv = λv. So, we can prove Euler’s theorem if we can show
that

|R− I| = 0. (3.45)

Do this using the orthogonality condition and properties of the determinant.
You should not have to work in components.

2. Show that SO(3, 1)o is a group. Remember that SO(3, 1)o is defined by 3
conditions: |A| = 1, A44 > 1, and (3.22). Proceed as follows:

a) Show that I ∈ SO(3, 1)o.

b) Show that if A ∈ SO(3.1)o, then A−1 ∈ SO(3, 1)o. Do this as follows:

i) Verify that |A−1| = 1

ii) Show that A−1 satisfies (3.22). Use this to deduce that AT

does also.

iii) Write out the 44 component of (3.22) for both A and A−1.
You should get equations of the form

a2
0 = 1 + ~a2 (3.46)

b20 = 1 +~b2. (3.47)

where b0 = (A−1)44. Clearly this implies b0 < −1 or b0 > 1.
Now, write out the 44 component of the equation AA−1 = I.
You should find

a0b0 = 1− ~a ·~b. (3.48)

If we let a ≡ |~a|, b ≡ |~b| then the last equation implies

1− ab < a0b0 < 1 + ab. (3.49)

Assume b0 < −1 and use (3.47) to derive a contradiction
to (3.49), hence showing that b0 = (A−1)44 > 1, and that
A−1 ∈ SO(3, 1)o.
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d) Show that if A,B ∈ SO(3, 1)o, then AB ∈ SO(3, 1)o. You may have
to do some inequality manipulating to show that (AB)44 > 0.
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Dirac Dictionary

We summarize here all of the translations given in the text between Dirac notation
and standard mathematical notation.

Standard Notation Dirac Notation

Vector ψ ∈ H |ψ〉
Dual Vector L(ψ) 〈ψ|
Inner Product (ψ, φ) 〈ψ|φ〉
A(ψ), A ∈ T (H) A|ψ〉
(ψ,Aφ), 〈ψ|A|φ〉

T j
i e

i ⊗ ej
∑
i,j

Tij|j〉〈i|

ei ⊗ ej |i〉 |j〉 or |i, j〉
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