Physics 209: Classical Electromagnetism
Final Exam

Due by 12 noon, Dec 14, 2006

Ori Ganor

Directions

e Please try solving both problems below.
e Please explain your solution.

e Even if you do not reach a final answer, please explain your plan for
the solution and please write down the relevant formulas. That may
help for partial credit.

e No need to rederive standard expressions that we derived in the class-
room or that appear in the textbook.

e You may use your favorite software such as Mathematica or Maple for
algebraic manipulations and integrations (but you don’t need to!).

e Please return your solutions to me by Thursday 12/14, 12
noon.

e When you are finished, you can either return a handwritten solution to
my office 403 LeConte Hall (slide it under the door if there is no one
there), or email the solutions to

origa@socrates.berkeley.edu

I can read TeX, LaTeX, MSWord and PDF. (Please don’t send Mathe-
matica notebook files.) If you choose to return a handwritten solution,
it would be good if you could also email me a message so as to be sure
that I got your solution.

e During the exam period, you can communicate with me via e-mail.

e The maximal number of points that you can get for each problem is
indicated in brackets [---]. These numbers are tentative and might
change slightly.

Good luck!



Physics 209: Classical Electromagnetism
Final Exam: Dec 13, 2006
Ori Ganor

Problems

Problem 1: Electrostatics [45pts]
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You are in charge of designing an experiment that requires a static po-

tential of

_ Va? q
o(z,y) = o V and a are constants

along the x — y plane z = 0. You decide to do this by designing a pair of
appropriately shaped conductors to be placed somewhere below the plane
z = 0, such that one will be kept at a constant potential +2V and the other
will be kept at a constant potential —2V. (See the figure, but note that the
shapes are not the correct ones and do not depict the actual answer!) Given
V', what shapes will you design for the (surface of) the conductors and where
will you place them? (Everything is in vacuum.)

Note: Don’t be surprised if you find that the two conductors need to
touch at some point. You may assume that the surface of each conductor
is coated with a thin but good insulator, and don’t worry about electrical
breakdown.



Solution

This is a Dirichlet boundary value problem. The Green’s function for the
space z > 0 with Dirichlet boundary conditions on z = 0 is
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In our case
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Therefore for z > 0 we find
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The last integration can be done by a contour integration. Note also that if
we define a complex coordinate ( = z + ¢z then
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So, it is the real part of an analytic function in (, and hence a solution to
Laplace’s equation in 2D.

Now we can find the position of the conductors. We analytically continue
the potential to z < 0 and solve
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These are cylinders of radius a/4 with centers z = —3a/4 and z = —ba/4.
They touch at z = —a.
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Note 1

Some of you noticed that the potential can be generated by a straight wire
of dipoles located at (z,z) = (0, —a), with electric dipole moment per unit
y-length given by .

d_p = 2megVaz.

dy
This can be seen by calculating the potential of a wire with constant charge
density o (using Gauss’s law):
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(where 7 is an arbitrary constant of integration), and taking the limit of two
close and parallel wires with opposite charge densities.

Problem 2: Radiation [55pts]

In this problem the space above the x — y plane (z > 0) is vacuum, and
the space below the x —y plane (z < 0) is filled with an insulating dielectric
material with electric permittivity e(w) (that depends on the frequency w/2m)
and magnetic permeability p = pp.

A thin wire of uniform charge density (per length) o is placed below the
plane z = 0 at a distance a from it and parallel to it, and is moving with
constant velocity v along the z-axis, so that it occupies the spacetime events
(ct,vt,y, —a) where —oo < y < oo is the y-coordinate, and —oo < t < 00 is
time. o is the charge density in the lab frame, and the velocity v is larger
than c¢/e(w) for at least some range of w’s.

4



Find an expression for the power per unit length of (Cherenkov-like)
radiation emitted by the wire.

Solution

We work with phasors. The charge density is

1 twt o 12z
p(z,y,2) = 27T/05(z a)d(x — vt)e™'dt = 27rv5(z a)e'”.
The current density is J = pvz. We need to solve for the fields E and B.
Since the charge and current density are independent of ¢, we can look for a
solution where the fields only depend on z, z. Since the charge and current
density depend on z only through the factor exp(iwz/v), we can look for a
solution where all the fields depend on x only through this factor.
The configuration is invariant under reflection y — —y, whereas the elec-
tric field components transform as

Ez(.T,y,Z) — Ez(xv _y72)7 Ey(iayaz) — _Ey(ma —-Y, Z); Ez(xayaz) — Ez(xa -Y, Z)

Since the fields are independent of y we must have E, = 0. The magnetic
fields transform as

Bm(x,y,Z) — _Bm(xa _yaz)a By(x:y: Z) — By(x: _y72)7 Bz(x:y: Z) — _Bz(x: —y,Z)

So we conclude that B, = B, = 0. We can arrive at the same conclusion
also by noting that the vector potential only has an Z-component and is
independent of y.

So now we are looking for a solution of the form
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E(z,2) = €75 (By(2)d + E,(2)2), B(z, 2) = €' By(2).

For z < 0, Maxwell’s equations imply:
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Looking at these equations component by component, we find four relations:
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The last and the first equations are identical, and substituting the third
equation into the second we get:
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We should keep only the outgoing wave solution (the one going down), so

E, = De”™*
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where the wavenumber is defined as
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k is real only if v > 1/,/moe which is to say that v is greater than the speed
of light in the medium.
For (z > 0) we have
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Looking at these equations component by component we get:
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Eliminating B, we find an ODE for F,(z):
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The solutions are of the form
E, =A%+ A e "™

where
v? w
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For z > a we keep only the attenuated part, so:

B - Ae™"# for z > a
7] Be®™ 4+ Ce® forz<a
The boundary conditions at z = a are
O~ E,(a%) — E,(a") = (A — B)e™r — Cee,
2mvey

and

0=FE(a")— FE'(a”) = —k(A — B)e " — kCe"
[If there were a jump in E! then E” would have contained a term proportional
to 6(z — a), but as we see from the differential equation, it only contains
d'(z — a).] Combining the equations we get

C=—(A-B)e " = 7 = (A= B)e ™™ — Ce"* = —=2Ce"™
2mveg
= (C =— 7 e "™, A-—B= 7 er.
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Now we match the boundary conditions at z = 0. There, we have

E.(0Y)=B+0C,  E(07) =x(C - B),



and
E.(07) =D, E (07) = —ikD.
The boundary conditions are
QE.(07) = B.(07),  —EL(0%) = E,(0%) = E,(07) = —E(07).
w w
So, E, has a discontinuity at z = 0 but E is continuous. We therefore get

k(C — B) = —ikD, B+C=-<D

€0

The solution is:
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The energy loss per unit wire length, per unit traversed length is
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The integral is over both positive and negative w’s. Converting to only
positive frequencies, we get a factor of 2
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and the integral is over the range of frequencies for which
1
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Note the exponential fall of as a function of a. The power loss is
dP dE
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