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Hilbert scheme of points in C?
By definition,

={ ideals I C Clx,y],
such that dim¢c Clz,y]/I =n }

For example, if
S={p1,...,pn} C C2

are n distinct points, then

I(S) :{fE(C[x,y],f(pl) ::f(pn) :O}

is an element of
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The Hilbert scheme Hilb,, is a smooth, irreducible, quasiprojective

variety of complex dimension 2n.
An open dense set of Hilb,, is formed by ideals of n distinct points.

The complement O of this open set is a divisor in Hilb,, and
= 10 = ¢,(Cla, y]/T)

is the positive generator of
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Let X be a projective algebraic variety, a, 3,7 € H*(X). The

Quantum cohomology

quantum product * in H*(X) is defined by

(virtual) number of degree d rational
(axB,7) =) ¢

=~ curves in X meeting oV, 3", "

where

(-, -) = standard inner product on H"(X)
o’ = Poincaré dual cycle to o

g = new parameter

Setting ¢ = 0 gives classical multiplication in H*(X).
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We are interested in quantum cohomology of the Hilbert scheme, in
part, because it is related to higher genus curves in 3-folds of the

form

curve x surface, e.g. P! x C?
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Curves in X = curve B x surface S

Three points of view:
e parameterized curves, i.e.

QQ\Z7 maps [ : — X
>
T

e curves defined by equations,

-1

i.e. ideal sheaves on X

q
\LL@> e maps from the base B to

Hilbert scheme of S

~

The 1st and 2nd are related by the GW=DT' conjecture of
IMNOP]. (Now a theorem for rank 2 bundles over curves.)

The 3rd point of view lies between GW and D'T.
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Review of classical cohomology of Hilb,,

Work of Ellingsrud-Strgmme, Nakajima, Grojnowski, Lehn,
Vasserot, Li-Qin-Wang, Costello-Grojnowski, . ..
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In fact we will need ...
Equivariant cohomology ot Hilb,,
The torus T = (C*)? acts on C* and Hilb,, by

(21722) ) ($,y) — (Zl$,22y) y

Equivariant cohomology ring H/;.(Hilb,,,Q) is a free module over

Hr(pt,Q) = Q[Lie(T)] = Q[t1, t2]

with a basis ...
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Let p = (p1, p2, - -

For example:

\_

.) be a partition of n with ¢(x) nonzero parts.

Nakajima basis

(

Ve

r

&

ideals supported at ¢(u)
distinct points of C? with
multiplicities w1, uo, . . .

~\

1) = identity
2,1"7%) =-D

N

0

V

- Hn—ﬁ(,u)

~
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An important role is also played by ...

Torus-fixed points in Hilb,,

These are ideals I in C|z, y| spanned by monomials. They
correspond to partitions A of n. Here is I(5 4,2 1) € Hilb1o

........................................

y3 ZCy ZC2y3 ZCByB ZC4y3 ZC5y3 ZC6y3

---------------------------------------------------

y4 ZCy $2y4 $3y4 ZC4y4 ZC5y4 ZC6y4

-----------------------------------------------------------
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In particular, torus-fixed points are isolated.

By Atiyah-Bott, the classes [I)] of fixed points form a basis of
Hp(Hilb,) @ Q(t1,12) .

We have
[Ix] - [1,] = const 0y, [14],

and, therefore, |I,] are eigenvectors of multiplication by any
element of H7 (Hilb,,).
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As it turns out, in the Nakajima basis,

Classical multiplication
by the divisor D

Quantum Calogero-

Sutherland operator
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Quantum Calogero-Sutherland Hamiltonian

len/ 0\’ 1
Hog = = - 1
CS QZ(ZZ(‘?zz> —|—9((9 )Z|Zi_zj‘2

1=1 1<J

describes N identical quantum particles on the circle |z;| = 1

interacting via an inverse square potential.
6 = coupling constant

Ground state: vy = HKJ-(Zz' - Zj)g

ﬁCS = 1?0_1 Hos o preserves Clzq, ..., ZN]S(N)

Convenient to view N as formally infinite.
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Identify EB H™(Hilb,,) with symmetric polynomials in z; by
n>0

. 1
) [Aut() L

p,LL:Hp,uia pk:zzf

where

Then ...




Multiplication by D

= | CS operator




Multiplication by D = [ CS operator

T-fixed points [I)] ] =| Jack polynomials Jy




Multiplication by D

:[ CS operator

[ T-fixed points [I)] ] =| Jack polynomials Jy

parameter —tq /to

= | parameter 6




Multiplication by D = [ CS operator

[ T-fixed points [I)] ] =| Jack polynomials Jy

parameter —tq /to ] — | parameter 6

multiplication by H* ] = | commuting Hamiltonians




Quantum multiplication by D =7

It is not the Macdonald operator . ..
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Theorem 1. The operator of quantum multiplication by D is:

i+t (—)F+1
MD— 9 §k<_q>k_104_k04k—|—

1
5 E [t1t204k+104—k04—z—Oé—k;—zOékOéz +
k,1>0

where

J
a_p = multiplication by pr, ap=k—.
Opk,




Main technical issue: while T-fixed points in Hilb,, are isolated,

T-invariant curves are not.

A variety of techniques is used to get around this.
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Corollary. Divisor D generates the quantum ring over Q(¢1,t2)
False for classical cohomology

The entire quantum ring structure is thus determined

WDVYV then determines all genus 0 GW invariants

Localization determines
higher genus GW invariants from genus 0 data
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Quantum differential equation, I

qi\p:MD\I}
dq

Nonstationary analog of Schrodinger equation for Calogero-

Sutherland operator.

Solutions are related to:
e general 1-partition triple Hodge integrals in GW theory,

e equivariant vertex with one infinite leg in D'T' theory
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For example, for n = 2, QDE is a hypergeometric equation.

For n = 3, QDE has the form

I (¢ —1)(g+1)°

3(t1 + t2) pea

d
g ¥ = 21 to

0

i1 + 1o
( )q
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Quantum differential equation, II

d
q—\If:MD\If
dq

Linear ODE with regular singularities at
q = 0, 00, roots of unity

Residues at ¢ = 0, oo are CS operators.

Residues at ¢ = V1 are diagonal in Nakajima basis.

?

Monodromy = .

Solubility is controlled by:
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Theorem 2. Monodromy of QDE is invariant under
ti i ti — 1 ,
where 1 = 1, 2, provided

ti #r/s, 0<r<s<n.




Corollary. When the
K=11 + 12

is an integer, there is no monodromy around roots of unity.
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When « =0, 1,2, ..., solutions of QDE have the form
U =gq \4

where

= Y [ -Dth+ G — Dt

L=(z,7)EX

are the CS eigenvalues and
YA = x +O(q)
is a polynomial in g of degree

deg, Y* = c(A) + ¢(X) € Zso -
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First properties of polynomials Y*

Symmetry:
YA (t1,ta) = Y (ta, t1).
Biorthogonality:
<Y>\(t17 t2)7 YM(_tla _t2)) — 5>\M||J>\||2 )
where 5
pNTR4
(P Pu) = 75500




/

Scattering

As ¢ — 0,00, QDE becomes the CS system.

The ¢ — ¢~ ' symmetry of QDE acts by:
_q)—cN) _g)c(\)
q q v,
0 v g = - v (g,
h>\ h)d

where
pr = (1) "py
is the standard involution on symmetric functions.

The factors h)y are given by ...
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hA:HF(tl( +1) —t9 +1)

NG — t2(I(L) +1))
where the arm and leg of a square [ | are defined by
_ab) |
(0)

Note that there are x 4+ 1 factors per square in h.
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Formula for Y» = ?

At g = 0, the coefficients of p, in J) (Jack analogs of symmetric

group characters X;\L) have not been understood.
However, we expect that at ¢ = —1 the coeflicients are nice.

Namely, they are X;\L times an explicit product of linear forms in ¢
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7.
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All this indicates that there is probably a rich theory of the
polynomials Y*. Maybe this is the beginning of the theory of

nonstationary integrable systems 7

We expect more interesting examples from
GW /DT theory of threefolds.




