Problem set # 1

1 Polyakov action

Derive the expression

$$\delta_{\gamma} S_{P}[X,\gamma] = -\frac{1}{4\pi \alpha'} \int_{M} d\tau d\sigma (-\gamma)^{\frac{1}{2}} \delta \gamma^{ab} (h_{ab} - \frac{1}{2} \gamma_{ab} \gamma^{cd} h_{cd}), \qquad [1.2.14, p12]$$

for the variation $\delta_{\gamma}S_{P}[X,\gamma]$ of the Polyakov action under a change in the worldsheet metric.

2 2D differential geometry

Define coordinates

$$\sigma_{\pm} = \sigma \pm \tau$$
.

Find the Christofel symbols Γ^a_{bc} , Curvature tensor R_{abcd} , Ricci tensor R_{ab} , Ricci scalar R, and Einstein tensor $R_{ab} - \frac{1}{2}\gamma_{ab}R$ for the metric

$$ds^2 = e^{\phi} d\sigma_+ d\sigma_-$$

where ϕ is a function of σ_+, σ_- . Explain what your result for the Einstein tensor means physically.

3 Problem 1.3 of [1] [*]

For worldsheets with boundary, show that

$$\chi = \frac{1}{4\pi} \int_M d\tau d\sigma (-\gamma)^{\frac{1}{2}} R + \frac{1}{2\pi} \int_{\partial M} k \, ds,$$

where ∂M is the boundary curve, ds is the proper time in the boundary metric γ_{ab} and k is the geodesic curvature of the boundary,

$$k = \pm t^a n_b \nabla_a t^b,$$

where t^a is a unit vector tangent to the boundary and n^a is an outward pointing unit vector orthogonal to t^a . The upper sign is for a timelike boundary and the lower sign for a spacelike boundary.

4 3D soap bubbles [*]

It is often useful to consider the analog of the Polyakov action in Euclidean target space. In this case it is convenient to write (σ_1, σ_2) instead of (τ, σ) . The classical solutions are surfaces of minimal area. In this problem we will apply this technique to three-dimensional soap bubbles.

[*] Consider a parameterization

$$X^{1} = \sigma_{1}, \qquad X^{2} = \sigma_{2}, \qquad X^{3} = f(\sigma_{1}, \sigma_{2}).$$

Using the Nambo-Goto action, find a differential equation for $f(\sigma_1, \sigma_2)$.

- If we have cylindrical symmetry, we can write f as a function of the radius $r \equiv \sqrt{\sigma_1^2 + \sigma_2^2}$. Write an ordinary differential equation for f(r) and solve it.
- Now use the Polyakov action to find the general solution f(r).
- [***] Use the Polyakov action to find the shape of a soap bubble suspended between the infinite line $X^2=0, X^3=-a$ and the line $X^1=0, X^3=a$. **Hint:** A harmonic function on the (σ^1, σ^2) plane can be expressed as the real part of an analytic function in $z\equiv\sigma^2+i\sigma^1$. Try to find the derivatives of the analytic functions corresponding to X^1, X^2, X^3 . As a further hint, take the worldsheet to be a strip given by

$$-\frac{\pi}{2} \le \sigma^1 \le \frac{\pi}{2}, \qquad -\infty < \sigma^2 < \infty$$

and look for a solution which is invariant under the symmetry

$$X^2(\sigma^1,\sigma^2) \longrightarrow X^1(-\sigma^1,\sigma^2), \quad X^1(\sigma^1,\sigma^2) \longrightarrow X^2(-\sigma^1,\sigma^2), \quad X^3(\sigma^1,\sigma^2) \longrightarrow -X^3(-\sigma^1,\sigma^2).$$

5 Holomorphic curves

Assume that both the worldsheet as well as the target space have metrics of Euclidean signature. Suppose the taget space is even dimensional D = 2n. Define complex valued fields

$$Z^{1} \equiv X^{1} + iX^{1+n}, \quad Z^{2} \equiv X^{2} + iX^{2+n}, \cdots, Z^{n} \equiv X^{n} + iX^{2n}.$$

Also define $z \equiv \sigma^1 + i\sigma^2$ for the worldsheet coordinate. Take a classical configuration with $Z^j(z)$ all given by holomorphic functions. In algebraic geometry, this is called a *holomorphic curve*. Show that a holomorphic curve is a solution to the equations of motion derived from the Polyakov action. Holomorphic curves are therefore minimal area surfaces.

References

- [1] J. Polchinski, "String Theory," Cambridge University Press.
- [2] M. B. Green, J. H. Schwarz and E. Witten, "Superstring Theory," Cambridge University Press.