Physics 505 Oct 19, 2000 Ori Ganor

1 Functions of matrices

Given an $n \times n$ matrix, A, we often need to calculate a function of it, such as A^k , e^A , etc. One way to do it is to "diagonalize" the matrix. This means, to find an invertible $n \times n$ matrix P such that $A = P\Lambda P^{-1}$ and Λ is a diagonal matrix. Now we can calculate:

$$A^{2} = P\Lambda P^{-1}P\Lambda P^{-1} = P\Lambda^{2}P^{-1}, \qquad A^{3} = P\Lambda^{3}P^{-1}, \cdots, A^{k} = P\Lambda^{k}P^{-1},$$

and in general, $f(A) = Pf(\Lambda)P^{-1}$. The point is that since Λ is diagonal, $f(\Lambda)$ is easy to calculate:

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}, \qquad f(\Lambda) = \begin{pmatrix} f(\lambda_1) & 0 & \dots & 0 \\ 0 & f(\lambda_2) & & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & \dots & f(\lambda_n) \end{pmatrix}.$$

(check for $f(x) = x^k$.)

The remaining question is how to find P and Λ . We can write the equation $A = P\Lambda P^{-1}$ and $AP = P\Lambda$:

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{2n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} P_{11} & P_{12} & \dots & P_{2n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \dots & P_{nn} \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} & \dots & P_{2n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \dots & P_{nn} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_{1} P_{11} & \lambda_{2} P_{12} & \dots & \lambda_{n} P_{2n} \\ \lambda_{1} P_{21} & \lambda_{2} P_{22} & \dots & \lambda_{n} P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{1} P_{n1} & \lambda_{2} P_{n2} & \dots & \lambda_{n} P_{nn} \end{pmatrix}.$$

Let us take only the r^{th} column of this equation (r = 1, 2, ..., n) We see that:

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{2n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} P_{1r} \\ P_{2r} \\ \vdots \\ P_{nr} \end{pmatrix} = \begin{pmatrix} \lambda_r P_{1r} \\ \lambda_r P_{2r} \\ \vdots \\ \lambda_r P_{nr} \end{pmatrix}.$$

This means that the vector

$$= \left(\begin{array}{c} P_{1r} \\ P_{2r} \\ \vdots \\ P_{nr} \end{array} \right)$$

is an eigenvector of A with eigenvalue λ_r . We can also write this equation as:

$$\begin{pmatrix} A_{11} - \lambda_r & A_{12} & \dots & A_{2n} \\ A_{21} & A_{22} - \lambda_r & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} - \lambda_r \end{pmatrix} \begin{pmatrix} P_{1r} \\ P_{2r} \\ \vdots \\ P_{nr} \end{pmatrix} = 0.$$

This means that:

$$\det(A - \lambda_r I) = \det\begin{pmatrix} A_{11} - \lambda_r & A_{12} & \dots & A_{2n} \\ A_{21} & A_{22} - \lambda_r & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} - \lambda_r \end{pmatrix} = 0.$$

If we calculate this, we will get a polynomial equation in λ_r . (Recall that A is given.) This equation will have n solutions. This solutions will be $\lambda_1, \ldots, \lambda_n$.

To sum up the procedure is as follows:

- 1. Expand the determinant det(A xI) as a polynomial in x.
- 2. Solve det(A xI) = 0 for x. Genereically, you will find n solutions. (We will not discuss multiple roots here.)
- 3. For each solution $x = \lambda_r$ find a vector v such that $(A \lambda_r I)v = 0$. The elements of such a vector can be taken as P_{1r}, \ldots, P_{nr} .
- 4. Combine all the *n* vectors from the previous step to form the $n \times n$ matrix P.
- 5. Calculate $f(A) = Pf(\Lambda)P^{-1}$.