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Ori Ganor

1 Free particles

1.1 The rules

The answer that QM gives to the question “where is a particle?” is a prob-
ability distribution f(x,t) such that

Prob{a < z < b} = /bf(a:, t)dz, /Oo flz,t)de =1

—0o0

If we are in 3D we have f(z,v, 2,t).
The rule is as follows: at any given time ¢, the particle is described by a

complex wave-function v (z,t) such that

f(@,t) = [P(z, )"

Thus 9 encodes in it the probability distribution for the particle as well as
a phase which has no obvious physical meaning but is very important for
interference phenomena

We can also ask the question “what is the momentum of the particle?”

The answer is another probability distribution f(p, ¢) such that

Prob{a < p < b} = /ab f(p, t)dz, /Oo f(p,t)dp =1

—0o0

The rules also say that at any given time ¢ there is another complex valued
function (p, t) such that

fp,t) = |¥(p, t)|%



The rules say that if we already know v (z,t) we can determine 7,/3(p, t) via a

Fourier transform:

Finally, the rules say that if you know that the particle has mass m and is
moving in a potential energy of V' (z,t) then the time evolution of ¢ (z,1) is

determined from Schrodinger’s equation:

N R 2

Where is all this coming from?

1.2 Plane waves

Let us forget about QM, for the moment, and discuss ordinary waves. Let us
consider a plane wave with frequency f and wavelength \. It is convenient
to work with the angular velocity and wave-number:

27
=

A wave means that there is some quantity v (z,t) which varies sinusoidally:

w = 27V, k

W(z,t) = o cos(kx — wt + ¢y)-

¥ (z,t) means different things for different waves. It could be, for example,
the pressure as a function of position and time (for sound waves) or the
electric field for EM waves.

There is a sense in which this wave is moving. To see how fast, let’s see

how to keep the phase kx — wt constant. We need:
w
T = Et + const.

We define the phase-velocity to be:

Light-waves in vacuum satisfy w = kc and therefore vy, = c. Usually, waves
can have various k’s but w is determined as a function of k for the particular
problem:

w(k) = dispersion relation.
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Sound waves have a dispersion relation that depends on the particular mate-
rial. Similarly EM waves have w(k) = kc in vacuum but a different formula

inside different materials.

1.3 Wave packets

What about waves that come in a pulse? The idea of Fourier-analysis (or
spectral analysis) is that they can be decomposed into component plane

waves:
b(z,t) = / dk A(k) cos(kz — w(k)t + do(k)).
How can that be localized? Let us take ¢o(k) = 0 and w(k) = kc and:

_J Ag forky—e<k<ko+te
A(k) = { 0 otherwise

We do the integral and find:

ko+e 2Agsine(x — ct)

P(z,t) = Ao/ cosk(z — ct) =

ko—e x—ct

sin ko(x — ct).

but how did it happen that the wave became localized? Let us take very
large « — ct. It has contributions of cos k(z — ct) with k£ running from ky, — €
to kg + €. If e(x — ct) > 27 then the phases k(z — ct) fluctuate fast and
cancel each other. the only region in which there are no cancelations is near

x —ct ~ 0.

1.4 Phase velocity and Group velocity

Let us push this idea further. It is easier to work with complex numbers.
Take:
P, t) = [ dk A(k)eitee®n

Let us assume that A(k) is a bump function and let us expand:
1
w(k) = w(ko) + (k — ko)wy + 5(k ko)l 4 -

Now let us integrate and keep only the leading terms (because (k — kg)? is

assumed small when A(k) is large).

v t) = [

—00

o0

A(k)eilkm—wot=(h—ko)wtt-] _ ilkowh—wo)t /°° dk A(k)e™*m=%
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We can write:
Y(x,t) = etkowo=woltyy(z — bt 0) 4 - - -
So the wave packet actually moves with velocity

, dw
Ug :QJO: %

This is called the group-velocity. We can understand this by trying to
figure out at a given time ¢, what x do we need to plug so that all the phases
kx — w(k)t would be roughly the same and won’t interfere. We find the

equation:

d
%(lm — w(k)t) k=, = 0 = = — W'(ko)t = constant.

We discovered that the wave-packet doesn’t move with velocity vy, = w/k
but rather with velocity v, = dw/dk. If w(k) = kv is a linear relation, it

doesn’t matter. But if w(k) is non-linear vy # vpy,!

1.5 Particles as waves

We have said that a particle is a wave. If the energy is £ and the momentum

is p, then the frequency and wavelength are:
h
v=—, A=—.
p

Therefore,
E =hw, p = hk.
The dispersion relation for particles is therefore:

E pz_hk2

k = = — = —
w(F) h  2mh 2m
The phase velocity is:
w(k) h D
= — = —k = —
T T om 2m

and the group velocity is:




What does that mean? It means that a wave packet of a particle with
momentum p moves with velocity p/m which is what we expect!
For particles we assume some unknown kind of function ¢ (z,t) that can
be negative or, in fact, complex.
Its decomposition into plane waves is:
o0 e
b(z,t) = / A(k)e*o= it gk
—o0
Since % is complex we cannot interpret it as the probability distribution
itself. A probability distribution has to be a nonnegative quantity. It turns
out that [¢(x,t)|? is the correct probability distribution.

1.6 Average position and the uncertainty

Now we can write down formulas for the average position and the uncertainty
in the position.

(0) = [ alulw,nfds,

(A2) = (@@= @) = [ (@= @)W 0l

1.7 Momentum distribution function

How do we determine the momentum distribution function? Since A(k) is
the “weight” of wave-number k it is natural to expect that if A(k) is large
the contribution of this particular wave-number is large. Since p = hk, it
seems that A(%) is related to the distribution function of momentum. But

A(k) can be negative or complex. The correct thing to do, turns out to be:

~

2m Dy
=T4E
fo) = —14B))
Let us perform a check on this. We know that:
1= [ [l ) ds.
Let’s check that:

| iwdp=1.
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We have the following Fourier transform relations:

U t) = [ drag)eteewn,

Ak) = %ew(k)t/_oodx¢(x,t)e_ik”.

So,
o0 . B 2_77 [es) B 9 B o] 9
| iodp = [ A dp =2 [ |A(K)Fdk
- / dk dz A(k)e 0 (i, £)eh® = / dz o (z, )" (2, 1) = 1.
We define:

S

1.8 Schrodinger’s equation for a free particle

Let us try to come up with an equation that the free-particle satisfies. We

have:
bylat) = elk=wt,
oy iE
E - hwa
a?w p2
PR A
But
2
=2
2m
So,
L0 WO
815 2m O0x?

1.9 Momentum average

How do we calculate (p)?

2m [ J2ND o 9
= — — = A
@) = T [ pdplAC)E =2wh [ KA(K) Pk
ikx
. / dk dz kA(K)e 0ty (o, 1)t = i / dk dz A(k)e @ty (2, 1) agx
. 8w (x t) aw(x,t)
—zh/dmﬁxt o = h/dm/) s



(using integration by parts in the last 2 steps.)

We can now prove that:

To do that we write down:

R s

33:2 ox2
*a% zh a?w hor oY
—/w@—% o2V " m ) a?
_ _ _th 0y 1
- = SoUt = —(p).

(using integration by parts.)

1.10 Spreading

In the homework you will be asked to prove that
d? 2
pres {Aw } — —Ap
This implies that
1
A?L‘Z = —2Ap2t2 + Clt + C()
m

After a long time, the spread Az of a free particle wave packet increases

linearly with time.

2 Schrodinger’s equation and simple solutions

2.1 Schrodinger’s equation
We have seen that Schrodinger’s equation is a consequence of the relation:

P

2m’
translated into a relation between angular velocity w(k) and the wave-number

k. What if the particle is moving in a potential V' (z), such that the force on

it is F = —V'(x)? Schrodinger’s guess was that we have to write:
2
E=L 1v
2m



but this doesn’t make sense anymore, since p and FE would have to change
as a function of z, and in QM we cannot talk about p(x) which would mean
that we know both p and z. Instead we change the differential equation that

the wave-function satisfies.

B(z,1) ~ ih%—f,
P’ R 0%y
o V@)~ e

Vig,t)(z,t) = V(z, 1)y,

Even though the separate terms do not make sense, Schrodinger suggested

that summing them up still gives the correct equation:

o h? oM

2.2 Probability current

Schrédinger’s equation allows us to determine v(z,t) at a later time, given
¥(x,0) at ¢ = 0. The first thing we have to check is that indeed the total
probability remains 1. That is, if

|l 0)fda =1,

then also,

| et =1,

—0o0

The idea is to calculate y
— £
% e 1)
Let us denote p(z,t) = |1(z,t)|?. We define the current density:
, ih , OY* oY
jlat) =5 (> 52"
In exercise (1) you’ll have to show that:
op_ _9j
ot Oz
As a result, if ¢ falls off fast enough at +oo:

_,(/)*

d 0j(x,t . .
L[ ot tyie = — [ PED gy - ey, =



2.3 Separation of variables

We will now consider time-independent potentials, V(). To solve Schrédinger’s

equation we use separation of variables. We look for solutions of the form

P(z,t) = P(z)o(2).

It is easy to see that ¢(¢) must be an exponential. We write it as:

o(t) = %!
The equation becomes

Ey(z) = —h—a—w + V(x).

2m 0x?

In principle, for every E we should be able to find ¢(z). In some cases
however, there are values of E which are not allowed. Why? Because the

boundary conditions on v are not satisfied.

2.4 Infinite potential well

We take the potential:

V(iz)=< 0 for—a<z<a

o forx < —a
o fora<z

What does co mean? It means that ¢ (z) = 0 outside —a < = < a. The

solutions are:
1 nmw

@bn(x)zﬁsin?x, ’I'L:]_,Q,...
The energies are:
B — n2m2h?
" 2ma?

2.5 Potential well

We take the potential:

V(z)=<{ —=Uy for—a<z<a

0 for z < —a
0 fora <z



The wave-function is made of 3 separate functions:

Yy forzx < —a
Y(x) =< ¢Yp for —a<z<a (2)
Yo fora<zx

The gluing conditions are:

Ya(—a) =vp(=a),  Yy(—a)=1p(—a),

Why? Because otherwise the 9" term in Schrédinger’s equation would be
infinite! (It is good to keep in mind that this potential is a model for a
smooth potential that is very steep.) Let us assume that £ < 0. (We will

discuss the other case at a later class.) We find the solutions:

1
Yalz) = Ae™, m:ﬁ\/2m|E|,
1
Yp(xr) = Bycoskx + Bjsinkz, k=£\/2m(Uo—|E|),
—KT 1
Ye(z) = O™, k=/2m|E],

Let us write: .
Kk =\ ki — k2, kozﬁ\ﬂmUo

The boundary conditions are:

Ya(—a) = ¢p(-a),
Va(—a) = p(-a),
ve(a) = vp(a),
Yola) = Yp(a),

Substituting the expressions for ¥4, ¥¢ and ¥ we find:

Ae ™™ = Bjycoska — B;sinka,
kAe ™ = kBgysinka + kB coska,
Ce™ = Bgcoska+ Bysinka,
—kCe™ ™ = —kBysinka + kB coska,

From the first two equations we find

By(kcoska — ksinka) = By (ksinka + k cos ka)
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From the last two equations we find:
By(k coska — ksinka) = —By(ksin ka + k cos ka)
It follows that:
By(k cos ka — ksinka) = By(ksinka + k cos ka) = 0.

We can see that if both By = 0 and B; = 0 then the wave function would have
to be zero identically. This is not what we want. There are two remaining

cases to consider:
1. By =0 and By # 0.
2. By=0and B; # 0.

Let us analyze them separately.

2.5.1 The case B; =0 and By # 0

We find the equation:
kcoska — ksinka = 0 = k?sin® ka = k* cos® ka = (kj — k?) cos’ ka
We therefore find:
k* = k§ cos® ka = k = £k cos ka.

Recall that kg is given and we have to solve for k£, from which we can obtain
the energy levels:
hik?

E= =
Uo+ 5,

We can solve k = £k cos ka graphically. (Draw the graphs of y = cosax
and y = z.) Note that there is always one solution in the range:
7
0<k< %
Now suppose we have a solution to k = +kycoska. It also satisfies k? =
k2 cos? ka and k?sin® ka = k? cos® ka. But we cannot be sure that it satisfies
kcos ka—k sin ka = 0 because it might satisfy « cos ka = —k sin ka instead of

kcos ka = ksin ka. Thus, we have to add the extra condition that &k tan ka >

11



0. Then we are assured that both coska and ksinka have the same sign.
This means that for & > 0 we exclude all solutions in the regions where

tan ka < 0. That is, we exclude the regions:

i T 3 2T om 3T
—<k< - —<k<—, —<k<—,...
2a a’ 2a a’ 2a a

2.5.2 The case By =0 and B; #0

We find the equation:
ksinka + kcoska = 0 = k? cos® ka = k*sin® ka = (kj — k?) sin” ka
We therefore find:
k? = kg sin? ka = k = +kj sin ka.

We can again solve k = +kysinka graphically. (Draw the graphs of
y =sinaz and y = z.)

Now suppose we have a solution to k = +kgsin ka. It also satisfies k? =
k2sin? ka and k? cos? ka = k?sin? ka. But we cannot be sure that it satisfies
ksinka + kcoska = 0 because it might satisfy ksinka = kcos ka instead
of ksinka = —kcoska. Thus, we have to add the extra condition that
kcotka < 0. Then we are assured that both sin ka and kcos ka have the
opposite sign. This means that for £ > 0 we exclude all solutions in the

regions where tan ka > 0. That is, we exclude the regions:

3T 2
O<ha = Tl 20 ko
20" a 2a° a

5
9g "

2.6 General properties of the solution
Let us assume that U(z) — 0 at z — +oo.
e The solutions are real.
e There is a solution which is physically OK for any £ > 0.

e For ' < 0 only discrete values are allowed. There can be a finite or
infinite number of them. In 1D there is always at least one. In higher

dimensions there could be none.
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If E > 0 then for large values of |z| the solutions take the form

Y =~ acos(kx + 9), k=—V2mE

1
h
If E < 0 then,

KT — KX 1
Y~ Ae"™® + Be "7, m:ﬁ\/2m|E|

However, only the solutions with A =0 for x — oo and B =0 for z — —o0
are physical. Because [ |¢|*dz is infinite. Why wasn’t this a problem
when F > 07 Because we could still make localized wave-packets. Thus,
for E < 0 we get two more equations from the regions x — +oo and these
are enough to give us an equation for F.

The question of whether there is an infinite number or a finite number
of bound states is related to the question of whether U falls off faster than
1/]z|? or not. One can use the uncertainty principle to argue that the particle

could be arbitrarily far from the origin.

2.7 A comment on bound states

In 1D every potential V' that satisfies V' < 0 everywhere and V — 0 at
x — +o0o has at least one bound state. This is because of the following
reason (that will be explained later on in the course). If Vi(z) > Vy(x) for
all x and there is a bound state for V; then there is also a bound state for Vj
with lower energy. Now, for V; we can choose a well potential and for V, we
can choose our potential V. In 3D, on the other hand, potential wells which

are shallow enough don’t bind!

2.8 ¢-functions

We now turn to a more mathematical subject that will be useful later on. Let
us ask the following question. Suppose we know that the particle is at z = 0.
What is its probability density? Let us look at the limit of the following

functions:

0 forzxz<—a

fa@)={ 5 for—a<z<a (3)

0 fora<z
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as a — oo. We formally define:

6(z) = lim fo(z).
The limit does not, strictly speaking, exist. However, mathematically, what

we are doing is called a weak limit. It means that for any continuous

function, g(z), we have a well-defined limit to the integrals:

70) = lim [ fu(@)g(w)do.
We thus formally define §(z) to be the limit. However, we are only going
to use it inside integrals. If we have a formula where §(z) appears without
an integral, we have to keep in mind that to understand it we have to think
what will happen if we integrate the formula.

The §-function satisfies:
d(z) = 0, x #0,
f@) = [ s@-vfwdy,

€

f@) = [ sw-nfwdy, >0,

—€

1 foo .
o(z) = —/ e*?dk,

21 J—co

. T 2
é(z) = ¢111—1>% pLEE

As an example, let us take the question from the prelim of 1997. The
question has V(z) = Ad(x). What does that mean?

oy h? 9%y

— =———=4 X .

ot 2m 0x? + A3(z)v(z)

This means that for x < 0 and x > 0, 1 satisfies the free equation:
0 _ _W o

ot~ 2m 022
So what does the d-function do? It affects the boundary conditions. Let us

ih

ih

integrate from —e to +e€ for € very small. We find
2

0= —j—m(w'(e) — /(=€) + A (0)

So the derivative of v is discontinuous at 0.
Physics 505
Week 3, Sept 28, 1999

Ori Ganor
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Hilbert spaces and Operators

3 Questions we can or cannot answer so far

Given the wave function ¢ (z), and what we have studied so far, we can

answer questions like:
e What is the probability distribution for position z?
e What is the probability distribution for momentum p?
e What will be the probability distributions at later times?

We haven’t discussed this last week, but probability means that we do
some experiment to determine the quantity. For example, what experiment
could determine the position of a particle? Put a photographic film, or just
look at the p-detector down the hallway!

But what about questions like:
e What is the probability that the particle has a given energy E7

e What is the probability distribution for other quantities like xp, say, or
x? + p??

e Why can we not ask questions about x and p simultaneously?

e What is the criterion that two quantities A and B can be specified

simultaneously?

e What about more complicated quantum mechanical systems where par-

ticles can be created or absorbed?

We will now describe the most general rules of QM.

So far we have the following rules:
e A particle is described by a function ¥(z).
e The average position is [ ¥*zydzx.

e The average momentum is —ih [ 1/)*%(&.
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e The time dependence is given by Schrodinger’s equation:

4 Hilbert spaces and operators

For a general QM system you need three things:
1. A Hilbert space that corresponds to the space of states of the system.

2. A set of Hermitian operators that corresponds to the physical ob-

servable quantities.
3. A Hamiltonian operator that describes the time evolution.

Let us discuss these separately.

For our purposes, in the case we studied so far, the Hilbert space is just
a term that describes all the possible wave-functions ¢(z). In the case of a
free particle, or when the potential goes to zero at infinity, the Hilbert space

is the space of all functions with:

[ @) < .

Note that for 1(z) to be a wave-function of a particle it has to satisfy:

1= [ @),

but for the definition of the Hilbert space we drop this normalization con-
dition.

In the case of an infinite potential well, the Hilbert space will be the
collection of all functions that vanish outside 0 < z < a.

Note: I am not being very rigorous mathematically, because I don’t
discuss very carefully singularities of the functions Mathematically, we might
also wish to demand that [ [¢'|> < co.

Also, we will find it convenient to add functions like e**®

whose integral
doesn’t converge.

A general Hilbert space satisfies two requirements:
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e It is a vector space. That means that if ¢)(z) and ¢(z) are two allowed
wave-functions then ¢ (z) 4+ ¢(z) is also allowed. More abstractly, we
denote (unnormalized) states by |a) and |b). If |a) and |b) are states,
then |a) + |b) is also a state. Also if A is a complex number then A|a)

is also in the Hilbert space.

e There is a way to get the “absolute-value” of a state by a formula that
generalizes [ |1|2dz. Moreover, given two functions ¢(x) and ¢(z) there
is a way to get a complex number out of them: [ ¢(z)*)(z)dx. When
the two functions are the same we get the previous integral [ |¢|*dx
which we require to be positive. For an abstract Hilbert space we have
the inner product which takes two states |a) and |b) and makes a
complex number (bla). We also require that (a|a) is always a real

nonnegative number and is zero only if |a) = 0.

This inner product satisfies:
(alb) = (bla)".
It also satisfies that if |d) = |b) + |c) then
(ald) = (alb} + (alc).
Also, if |¢) = Alb) then

(cla) = A"(bla),  (alc) = A(alb).

e We have operators that take a function ¢ (z) and make another func-
tion out of it, like x¢)(z) or —ihoY/dz or

In the abstract case, an operator O is a rule that transforms states, like
la), to other states O|a) = |Oa) such that

O(la) + |b)) = |Oa) + |Ob), O(Aa)) = A|Oa).

To any physical quantity like x or p, we associate an operator O like

x- or —ihd/0x. The rules then say that given a state |a) (a function

17



¥ (x)) which describes a state if (a|a) = 1, then the average of O in the
state |a) is given by:

(0) = (a|Oa).

These averages always have to be real. What does that mean about
O? Such an operator is called Hermitian. We will see later what this

means in more detail.

e There is one special Hermitian operator which we call the Hamilto-
nian and denote by H , such that the time evolution of any state is
described by:

0 .
th—\a,t) = Hla,t).
ola1) = Hla,1)
Here |a, t) is the state of the system at time ¢.
e If H is time independent we can find solutions in the form
la,) = 78! |a)

where |a) satisfies:
Hla) = Eq|a)

The states |a) have well-defined energy F,.

5 Example: a 2-state system

One of the simplest systems is a system that has just two states. Let us
call them [1) and |2). This seems like a simplified situation but it has many
applications. For example: spin—% particles, atoms in a laser, etc. A generic

state of the system is given by two complex numbers a; and as as follows:
la) = a1|1) + az|2).
We can also represent it by a vector:
N

Any (linear) operator is represented by a 2x 2 matrix with complex entries
such that:

O|a> _ 011 012 ai _ 011a1 + 0120,2
021 O a3 Oz1a1 + Oa9
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Let us see what are the requirements that (a|Oa) will be real for any |a). We
have:
(alb) = aiby + a3bs.

We calculate:
<a|0a) = 011\a1|2 + 022|(L2|2 + Oua“{ag + OglaZal.

In order for this to be real we need O;; and O to be real (take a; = 1 and

az = 0) and O3 = O%,. In other words, O is a hermitian matrix. Now let us
take: o
H— 1 12
( Hj  Hy
Suppose H is independent of time (i.e. H;; are numbers). To be a state with

a well-defined energy, we need:
H|a) = E,|a).

This means that |a) is an eigen-vector of the matrix H with eigenvalue FE,.
Recall that a Hermitian matrix always has real eigenvalues, so the energies,

E, are always real. We find:

I Hy+Hy+ \/(Hn — Hy)? + 4|Hqs|?
a — 2 )

So in general there are 2 possible energy states.

6 Expansion in a complete set of states

Any wave function 1 (z) can be Fourier transformed as follows:

1o 5 1 e ks
va)= o= [ akdmet, gk = = [ devlme
Thus, any wave function can be written as a sum of “simpler” wave functions
e'** which have a specific wave-number & and therefore a specific momentum

p = hk. This is true whether the particle is free or not!
Now let us take the problem of a particle in an infinite potential well of
size a. The wavefunctions are nonzero only in the region 0 < z < a. They

are:
nm R’r?

2 .
1/Jn(:c):\/gs1n7x, E, = Py L n=12,...
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Any function t(z) that vanishes outside the region 0 < = < a can be ex-

panded in the discrete Fourier expansion:

o0

Y(z) = Z Cn¥n ()

n=1
¢, are complex numbers. We think of it as if the function ¢ (z) describes a

particle which is in a combination of states 1,. If [ [1(z)[?dz = 1, what does

it say about the ¢,’s?
[ e@) ve)de = 3 cien [ a(e) nle)de

Now we can calculate:

1 ifm=n
0 otherwise

[ (e () = G = {

SO

[ 1w =3 e

What is the interpretation of ¢,? It is natural to interpret |c,|? as the proba-
bility that the particle will be in the state v, (x) or in other words, will have
the definite energy FE,,. But what does that mean? The particle is already
in the state 1 (z), how can it also be in the state ¥, (z)? To explain this, we
will have to think when we are going to ask such a question practically. This
has to do with the questions that we ask in the experiment. We will get to

this subject shortly. But first let us talk more in general.

7 complete orthonormal set (abstractly)

The situation happens quite often. We have a set of wave-functions:

V1), Yo (), - - -

such that all the other relevant functions (in our previous case, those that

vanish outside 0 < z < a) can be expanded as:
oo

n=1
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To specify 1(z), all we need to specify is the complex coefficients ¢y, co, . . ..

Let us also suppose that the ,,’s satisfy the orthonormality condition:

/ D () U (£)dT = G

In this case we can calculate ¢, given ¥(z), as follows:

v = [ ale)b(a)da.

It also follows that:

1= [ [b(a)Pde = Y fea?

So, we see that in general, if we have a set of orthonormal functions, which
is complete, i.e. every function v¢(z) can be expanded in them, it makes
sense, mathematically, to ask the following question:

Given a particle in the state with wave-function 1 (z), suppose we make
an experiment that forces the particle to turn into having one of the following

wave-functions:

¢1a¢2,"'

(we will see how to do that later) What is the probability that we get the

n" wave-function? The answer is |c,|?, where ¢, is given by:

e = [ ala) V(2)da.

Why am I saying that it makes sense to ask the question? Because of the

following reasons:
e The probabilities sum up to one: 3 |c,|*> = 1.

o If we start with ¢(x) = ¢,,,(z) the answer should be that the probability

is one if n = m and zero otherwise. This is true.

But how do we get such a series of complete orthonormal functions 1, (z)
and how do we make a physical experiment that forces the issue of which
function this is?

Let us make contact with the physical quantities of position x and mo-

mentum p. What are they in Quantum Mechanics?
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8 Hermitian Operators

We have seen that z and p are replaced with operators £ and p:
ip(z)  — zyp(a),

~ .3 OY(x
prp(z) — —in2E,

in general a physical quantity O is replaced with an operator O. The rules
say that the average of O (position, momentum, energy, ...) in a state |a)

(wave function 9 (x)) is calculated as:
(0) = (alOla).

A physical operator must give a real average. Why is the momentum average

real? because of integration by parts:

(@) = in w2 = —in [ = ().

Let us see what else we can deduce about O. Define:
le) = |a) + AlD).
For any complex number A we get another |c). We know that:
(clOlc) = (alOla) + [A*(B|Ob) + A(alO[p) + A" (b|O|a)

So
A(a|@|b) + A*(b|@|a)

must always be real. If we have that AA + A\*B is real for any A we put A =1
and we get A+ B is real which means that the imaginary part of A is minus
the imaginary part of B. If we put A = ¢ we get A — B is imaginary which

means that the real parts are the same. so A = B*. So:
(a|Ob) = (b|0]a)" = (Oalb)

An operator that is physical has to satisfy this. As far as mathematics goes,

an operator that satisfies this relation is called Hermitian.
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9 Hermitian adjoint of an operator

Another way of saying this is as follows. Given any operator (physical or
not) we can define the Hermitian adjoint, denoted OT, as follows. The
statement is that there exists an operator O such that for any |b) and |a)

we have the relation:

(O%bla) = (b|Oa).

10 Example

In the 2-dimensional Hilbert space we studied above let us take:
O\a) _ O Oxo ar | _ O11a1 + Or2ay
O21 Oy a9 Osz1a1 + Ogay
that we calculated above, and let us take

n=(1)

<b‘OACL> = Ollale + OlzaQbT + Ozlalb; + Oggagb;
= a1 (Onb){ =+ 02163) + a2(012b{ =+ 0221)3)
= a1 (Ofllh + O;lbz)* + ag(OTle + O;sz)*

Then:

So if we define:

We have:
(b|Oa) = (OTb|a>

In general if O;; is the matrix element of O then

(O = 05,

11 Formulas for Hermitian conjugation

Suppose we have two operators A and B and we know their conjugates At

and B'. We have a few rules as follows:
(AB)f = BtAl,  (\A+4 uB)t = XA + Bt
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We also have
©Ohi =0
We have found that Hermitian operators satisfy:
(a|Ob) = (Oalb)
We can also write this as:
(Ofa|b) = (Oald)
For any |a) and |b). This implies O = O,

12 Example: the operator for xp

Let us see what operator corresponds to x - p. The first guess is to take:

T-p—> TP.
But this is not Hermitian:
(@p)" = pz # 2p
In particular
pitp(x) = —m%(w(x)) = —iht(z) — mg;g_f,
i) = —ihall

(What do we do?) One way to solve the problem is to define:
..
- p— (2P +p2).
But there might be other ways. One has to see in the particular problem why

exactly we need to have the operator corresponding to zp and then decide
what to do.

13 Commutation relations

Since A - B is not necessarily the same as B - A it makes sense to define the
difference:
ABl=A-B-B- A

This is called the commutator of A and B.
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14 Uncertainty relations
Given a state |a) let us define:
xo = (al&la),  po = (alp|a).

and the operator:

N

O = (& — o) + XD — po)

Let us take A to be real. Then Of = (2 — z9) — iA(p — po). Let us define:
b) = Ola). Let us assume that |a) is normalized: (a|a) = 1, and let’s

calculate:

(Blb) = (a|0'0la) = (al(2 — 0)|a) + X\*(al(p — po)°|a) + iA(al[& — zo, p — pol|a)
= Az® + N2Ap® — R

This is nonnegative for any A. In particular, take A = Az/Ap. We find,
h
AxAp > —
2
We can generalize to any two Hermitian operators:
0 < AA%+ X2AB%+i)([A, B)]),
so the discriminant is positive which means that:
ANA’AB? > [([A, B)) 2.

Note that i[A, B] is a Hermitian operator.

15 Experiment and observables

Hermitian operators have the property that they have real eigenvalues and,
furthermore, the eigenvectors corresponding to different eigenvalues are or-
thonormal to each other. What’s more, in many cases of interest, the eigen-
vectors form a complete set. (We know that this is true about matrices. It
is not necessarily true for infinite dimensional Hilbert spaces but it is always
true for eigenvalues of Hamiltonians with potentials that are bounded from
below.)

25



Thus, the set of eigenvectors of the Hamiltonian H forms a complete
set of states. In general, we can do a physical measurement that measures
some physical quantity (z, p, 2 + p® etc.). This corresponds to a Hermitian

operator O. The Hermitian operator has a complete set of eigenvectors:
O|n)=An\n), n=12,...

(For example, for the Hamiltonian \, = E,,)

An appropriate measurement forces the particle to be in one of these
eigenstates. Thus, if we start with any state |a) and ask what is the proba-
bility that as a result of the measurement O will have the value )\, the answer

is as follows. Expand:
o) =) culn), = (nla).

The probability is then |c,|?.

16 Compatible operators

Two Hermitian operators are said to be compatible if they commute with
each other. This means that [A, B] = 0.

For compatible operators there is no restriction on AAAB. What’s more,
if |a) is an eigenstate of A:
Ala)y = Ma) = AB|a) = AB|a)
then B|a) is also an eigenstate with the same eigenvalue (unless it is zero).
For compatible operators, one can find a basis of mutual eigenstates |a, b)
such that,

Ala,b) = ala,b), Bla, b) = bla, b).

Operators that are compatible with H are very useful.

17 Expansion in a complete set of states —
the continuum case

Above we assumed that the set of eigenstates of the operator O is discrete,

A1, Ag, ... Some operators O have a continuum of eigenvalues and not a dis-
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crete set. Other operators may have a combination of a discrete series and

then a continuum. (like what?) Like a Hamiltonian of a potential well.
Let us take the operator p. What are its eigenvalues? These are states [p)

with wavefunction ¢, (z) = ﬁeim/ " Note that they cannot be normalized!
Any other state |a) with corresponding wave function 1 (z) can be ex-

panded as:

|a) = / dpc(p)lp),  clp) = \/_ / e~y (2)dx = (pla).

What does orthonormality mean here? If we put |a) = |p') we must have
c(p) = d(p —p'). Why? because there is only one way to write |a) as a
combination of |p)’s and that is with ¢(p) = d(p — p'). So from the formula
above we learn:
(plp’) = 6(p — p').

Note that this formula is formal. If we actually try to do the integral that
defines (p|p’) we will get nonsense. The formula is only a shorthand for the
theorem that if |a) = [ ¢c(p')|p')dp’ then c(p) = (p|a).

The basis we have just described is the one for which p is diagonal. That

means that it satisfies:
plp) = plp)-
What about the basis where Z is diagonal? What wave function 1) (x)
would satisfy z¢(z) = xo(z)? This must be 9., (z) = d(z — x9). Now we

can write any state as:
= /d:v'c(x')|x').

What would the c(z') coefficients be? They are just ¥, (z), the wave function
of |a). We also have:
(o' |z)y = 6(z — 2.

To sum up:
(z]a) = Ya().
18 Unitary operators

Hermitian matrices are matrices that satisfy AT = A. They have the property

that their eigenvalues are real numbers.
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Unitary matrices are matrices U that satisfy Ut = U~!. What proerties

do their eigenvalues have? They are of the form e¢”. An easy way to

remember this is to think what happens in the basis where they are diagonal.
iA

From linear algebra we recall that if A is Hermitian then e’* is unitary. The

matrix e*” is defined as the Taylor series:
: 1 1 1
A _ R VAT A L S
et =1+1A Q!A 3!A —|—4!A +
What is a more practical way to calculate ¢4? Given A we can change

to a basis where A is diagonal. Then,

aq ela1
1A eia2

Generalizing to operators, we define unitary operators as operators that sat-
isfy U'U = 1. The operator 1 is the operator that leaves the state as it
is.

Let us summarize:
iA

o If A is Hermitian then €™ is unitary.

e Unitary operators have eigenvalues of the form e*.
o If U is unitary then (Ua|Ub) = (a|b).

(These are all statements that we know about unitary matrices from linear

algebra.)

19 Examples of unitary operators

A unitary operator in Quantum mechanics can be recognized by checking
that it obeys:
(alb) = (Ua|Ub),

for all |a) and |b). Let us take a few examples.

U:px) — —v(@),
U @) — P(-a),
U, : (@) — ¥(x+a),
Up: p(z) — e*y(x),
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What are the eigenvalues of these operators? Note the difference between U
and U’. U" has both 1 and —1 eigenvalues.

Note that Uy can be written as ¢id for A = ki. What about U,? We
claim that A = +p. To see this note that:

Which is just Taylor’s series. However, not every function can be expanded
in a Taylor series so what is a better argument? To change basis to the

momentum basis!

zpa: T
D) ’—27r )

(This is just saying what the wave-function of |p) is!) Then:

1 . .
P, z) = —— [ e#P®|z — a) = er?%|p).

) = =z | Varh

(Note that U, |z,) has the wavefunction §(z + a — xq) so Uy|ze) = |z¢ — a).)

20 Unitary operators acting on other opera-
tors

Suppose U (a) = en® is the unitary operator discussed above that does
Ula)lz) = |z —a). Let us calculate U(a)2U(a)™" and U(a)pU(a)™. We
can calculate the first one in the basis |zg):

U(a)zU(a) " o) = Ula)i|zo + a) = U(a)(zo + a)|zo + a) = (zo + a)|zo).

A~

There is another way of doing this. Define O(a) = U(a)2U(a) . Let us
calculate dé/ da. First note that:

dO(a) _ dU(a)jﬁ(_a)+U(a)de(—a) i igpan i

ek ple h“p—ﬁeh“pxpe wab

da _h
7

= geﬁ“ﬁ {pi — ip}e #%P = ex%e 7% =],

So
O(a) = a + const.
The constant operator can be determined from:

O(0) = & = const = & = O(a) = & + a.
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21 Translation in time

Now we return to Schrédinger’s equation. In the Hilbert space notation we
can write it as:

m%m=ﬁ@m

where H is the Hermitian (perhaps time-dependent) Hamiltonian operator.
|t) represents the state of the particle at time . In the case of functions ()

we use the Hamiltonian p
H = om V(z,t).

We now define the time-translation operator U(¢,t) (for ¢ > t) as
follows. Given a state |a) we think of it as a state at time ¢ and solve
Schrddinger’s equation with the initial condition that |t) = |a). We then find
|t} and define

U, t)[ty = [¢').

U(t',t) is the operator that takes us from time ¢ to a later time ¢'. Is U
Hermitian? Unitary? or None? It is Unitary. We will prove it below.

First let us see what it satisfies.
e U(t,t) =1, the identity operator.
o U t) =UW", U, 1).

Next we calculate:

. a Nl . a / Yy al ! 7 (2INTT (4!
_ = _— = H = .
tho Ut 1)[t) = iho t) = H(E)[t) = HE)U(E, 1)lt)
This is true for any initial value of |t). So we find that as an operator we
have:

m%ﬁmo=ﬁwWWﬁ.

The way to think about it is as follows. in the simple Hilbert spaces we had,
U would be a matrix such that each element of it is a function of ¢ and t.
The left-hand-side (LHS) is an equation for every element of the matrix U

and is a differential equation in t'. Let us also calculate ih%f] (t',t). We do
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this as follows:

I R .
0 = ihg |t) =ihs (T, o)) —zh(

9

e T (4! d
S0t ,t)) [ty + RO (¢, 8) 10

_ in (%ﬁ(ﬂ,ﬂ) 8y + O, ) E (@)1,
9

ihaﬁ(t',t) = U, t)H(2).

In the time-independent case things are much simpler. We have
Ut t) =e w0 DH

One way to see this is to go to a basis of eigenstate of H.
To prove that U(#', t) is unitary in general, we can differentiate U (¢, ¢)1U (¢, t)
and show that it stays 1. First note that:

LG T H ()

oU(t.t)f _ {_iﬁr(t')ﬁ(t',t)}T =

ot! h B
d (- . au(t', 1)t . . U (1)
e ! t ! — ’ ! ! t ’
o {001} T U(t,t)—i—U(t,t? o
= %U(t’,t)m(t')ﬁ(t',t) - %U(t',t)fﬁ(t')ﬁ(t', t) = 0.

The initial condition is at ' = t where we have:
U, ) U(t,t) = 1.

So U(t',t){U(t',t) =1 for all t'.

22 Heisenberg picture for operators

Suppose we wish to calculate the expectation value of an operator as a func-

tion of time. Suppose we know that at time ¢ = 0 the state was |a). Then

(0)e = (tOlt) = (U(t,0)al0[U(t, 0)a)
= (al0(t,0)'00(t,0)|a) = (a|U(£,0)"' 0T, 0)a).  (4)

One can define:
O{t} =U(t,0)7'0U(t,0) = U(t,0)'0U(t,0)
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Let us see what this satisfies. First O {0} = O. Next we find:
(0): = (alO{t}|a).

The derivative is:

d - dU(t,0)" A .
oty = m%oz](t, 0) + iR (¢, 0)

= —U(t,0) Ht)OU(t,0) + U(t, 00/ 0H#)T(t,0)
= ~U(t,0 H®OU(,0)0(1,0)'0U(t,0) + U(t,0)'0U (¢, 0)U (¢,0)' H(1) U (¢, 0)
— —H{t}O{t} + O{t}H{t} = [O{1}, H{t}].

+AdU(t,0)
dt

Note the difference between H (t) and:

H{t} = U(t,0)' Ht)U(t,0).

23 Example
Take the Hamiltonian
1
H(t) = —p> + V(i,1).
(1) = 55+ V(1)
We can write: p = p{0} and Z = p{0}. Then:
1
Ht) = —p{0)2+V(4
(1) = 5-pOF +V(E{0},1),
. 1. . .
H{t} = o -pit}" +V(@{th),
We find the equations:
nLale) = [A{t), 2t} = —p{t)
Wt = U= P
We use the fact that:

#{tho{t}] = U(

Physics 505
Week 4, Oct 7, 1999

Ori Ganor
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Angular Momentum

24 Free particle in 3D

Schrodinger’s equation for a particle in 3D looks like this:

_Op(x,y,2,t) [ B,
ih ot - QMV +V("anazat) ¢($,y,2,t),
where 2 . . .
V=5 op o

When V is independent of time we are looking for eigenvalues of

2 I o o, A A
H= m(pz-l—py—i-pz) +V(%,7,2).

25 spherical variables

It often happens that V depends only on r = /22 + y2 + 22. We can then

change to spherical variables:
x = rsinf cos ¢, y = rsin#sin ¢, z=rcosf

The Laplacian becomes

by 10 (W) L[ 0 (a1 o
Vw_ﬂ(?r " or +r2 sin 0 00 Smeaa +sin296¢2

We look for solutions of Schrodinger’s equation by separation of variables:

¥(r,0,9) = R(r)Y (0, ¢)

We get the requirements:

B> 1d [ ,dR B A

ERr = ‘m—d—< W)‘WFRJ“V(T)R’
1 0 oY 1 0%Y
Yy = 9 (singl ) ¢ 2
A 5in 0 00 (Slnea()) T 70 942

The aim of this week is to find the functions Y and the eigenvalues \.
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26 Angular momentum

~ A~ ~

L, = gﬁz - 2ﬁy7 Ly = ﬁm — TPz, L,= iﬁy — YDz,
It is helpful to summarize this as:
Li =) €ijiiipr
ik

where

€123 = €231 = €312 = +1,

€321 = €132 = €213 = —1,

and €5, = 0 if two out of 4, j, k are equal. Note that since ¢ and p, commute,
it does not matter in which order we write gp, or p,y. We wish to understand
what possible eigenvalues these operators can take. For that, we calculate

the commutation relations:
oLy = ible,  [Ly La] = ihs,  [La,Ba] = ikl

This means that we cannot specify angular momentum in two directions
simultaneously unless all of them are zero. For example, if L,|a) = I,]a) and
Ly|a) = l,|a) then

i

Lule) = —31£y, Lla) =0

The other commutators then imply that the rest are zero as well.

Can we find another compatible operator? It turns our that
r2 _ 12 T2 T2
L"=L,+L,+L;

commutes with ﬁx,f)y and I:z So we can look for mutual eigenstates of ﬁz
and L2.
We can also calculate how f)x,f)y and L, act on a function v(r, 0, ¢). It

is easier to write the expressions for ﬁi = ﬁw + ifly. It turns out that:

= . aw Fa : a . a ~ —3 a . (9
L= —zha—¢, L, =he "’(@%—z cot 6 %), L =he "’(—@—H cot 6 %)

We have seen that L, commutes neither with L, nor with Ey. So, in general

we cannot specify mutual eigenfunctions. (This is true except for what
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case? Except for functions ¢(r) that are independent of both 6 and ¢.) Let

us calculate:

(L3, L,] = Ly[Le, L)+ Ly, L)Ly = —ih(LyLy, + LyL,),
[L2,L.) = Ly[Ly, L)+ [Ly, L.]L, = ih(LyLy + Ly Ly),
[ﬁg,ﬁz] = 0,
(L%, 1,] = o.

Similarly,

L%, L) =0, [L*L,]=0.
We can also write down:
P2 = bi+i%-ni,,
I? = L_L,+L*+hL,,

We can substitute the expressions for L, and L, found above, and write:

i 12 19 9
P2 = —p? 9 (sino2)].
" snzo96 T smo o0 <s1n0 )]

27 The differential equation
We wish to find eigenvalues of 12,
L®(0, 6) = A\W*®(0, ).

We do in by separation of variables.

(0, ¢) = Y (0)p(9)

This requires
d*o
u has to be a constant. This implies ¢ = ¢ and p = m?. Here m must be

an integer. Why? because ¢ is periodic. This also means that:

~ a@
L,® = —ith— = mh®.
1 96 m
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The remaining equation for Y now looks like:

2 1 Y
™y d (Sin@d—) %

~ sin%6 sin 6 df
We can change variables to £ = cos f and find:

_ bt d_d
sinfdf  d¢

Thus:
Y+ (1= ) 2 (1= €Y'©) =M1 - €)Y

Here —1 < £ < 1. We can write it as:

28, A m? _
eV e e =0

The coefficients are singular and in general the solutions can be singular. We

Y"

require that there is no singularity, i.e. the solutions are finite at x = +1.

To see what this means let us change variables again to x =1 — y:

29 A 2
Y'Yy Y - Y =0.
y(2—1y) y(2—1y) y2(2 —y)

Near y ~ 0 the solution behaves as Y ~ y® with:

1
s(s—l)+s—1m2:0=>s::|:m.

For m # 0 only the solution ¥ ~ yI™l is physical. For m = 0 there is
one solution that behaves like a nonzero constant. The other behaves like
Y ~ logy. In fact if the first solution is Yj then the second is Yylogy + Y

where Y] is analytic.

28 Legendre Polynomials

The solution of the equation is the associated Legendre functions that

are defined as follows:

d m
P(y) = (1— )™ (@) Py), m=0,12,...,

where the Legendre polynomials are defined as:

Py(y) = 2,%, (d%)l (y* —1)"
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29 Spherical harmonics

The wave functions that are the eigenvalues are called spherical harmonics.

They are:

(=)™ %eimd’lgm(cos §) form >0

Yim(0,¢) =

I e P cost)  form <0

The solutions, given the boundary conditions of being finite, turn out to be:

- @+ )+m) 1 dm
Yim(ev d)) - (_1)l\l 47-(-(l — m)' 2 sin™ @ d(COS 9)1_

ime

sin? @ e
m

How is the normalization determined?
1= / |Vivn|? 5in 0 d dob

The (—1)" is just a matter of convention. We will see how to get the solution
soon. Here A ={(l + 1).

30 Properties

What does the orthonormality condition turn into in spherical variables:

[ 5068 A6V (6, 6)' Vi (0, 6) = OG-

For a complete set of functions:

V1 (), a(x), - - -

we also have:
Z Un(x =0(z —2').

to prove it just take any wave function ¢ (z) and integrate both sides. We

get:
S etn(@) = v(@), = / n ()"0 () do

The spherical harmonics are no exception. We have:

00 l

S % Vil )il 6) = <60~ 8)6(5 - &)

=0 m=—1
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What this means is that any function (6, ¢) can be written as:
[e's) l
= Z Z Clmnm(ea ¢)7 - /nm 0 ¢) sin 0 df dQS
1=0 m=—1

As an example we can state the following useful identity:

dm

P(n-n') = o7

) Yim (6", )"

lm
m=—I

Here n is a unit vector in direction (0, ¢) and n’ is a unit vector in direction
0, ¢").
We first point out that Pj(n - n’), like any function of § and ¢, can be

written as a sum:

Z S cum (8, 6)Yens(6.6)

=0m'=-I'

The functions ¢y, (#',¢") can also be expanded as:

Ci'm = Z a'l’m’l”m”n”m” (0’, QSI)*

l/l mll

So we just have to determine the coefficients ay .

31 Solution via commutation relations

Let us try to solve the problem of eigenvalues of L? without ever writing a

differential equation! We note the following:
[L,,L.]=hLy, [L,L]=hL_.
Suppose 9 is a wavefunction with eigenvalues:
L2 =m2\p, L, = hmap.

Then, what do we know about f/+w? We know that it has the same eigen-
value of L2 and its L, eigenvalue is bigger by /. Hence, we call E+ a raising
operator. Now suppose we start with a certain value |/m) and given eigen-
value A. Then

Li|m) = L, --- Ly |m)
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has L, eigenvalue of (m +n). Similarly L" |m) has L, eigenvalue of (m — n).
We cannot take n too big. Why? Because ZZ cannot exceed L2. Why is
that true in QM as well? Set

a) = Ly |m).
We have
0 < (ala) = (m|LL L+ |m) = (m|L-Ly|m) = (m|(L*~L3~L.)[m) = h*(A=m(m~+1))(m|m).
So:
A>m(m+1).

So, if we apply I:+ many times at some point we get 0. Let us denote this
highest value by /. Then:

Lo|l)=0.
Assuming |l) # 0. Thus we find from the inequality above that: A = [(l+1).
We can now act with L_ to get wavefunctions with ever lower m. Let us
denote by |m) the normalized wave function. Let us set |b) = L_|m) and

calculate
(b|by = (m| L L_|m) = h*(1(I+1) —m(m —1)) = B2l + 1 —m)( +m)

So:
1 ~

T mi+1- Ty Lot

How low can we get with m? We can go on until we get [b) = L_|m) = 0.

|m —1) =

This implies:
by =R +1—m)(l+m) =0= m = —I.

We find:
lim) ~ L™, —1)

Now let us work out the normalization. For,
ja) = Ly |tm),
we found
{ala) = R*(I(1+1) —m(m+1)) =r*(1-m)(l+m+1)
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So:

[lm)

32

1.

2.

1

— L™, 1)

Rl +m)i+m—1)-1-(l—m+1)(—m+2)--(2])

—(l+m) (l — m)' rl+my; _
h Temiantr b=

To sum up

The eigenvalues of L? are h%I(l + 1) with [ = 0,1,2,... an integer.

For a given [, we get states |, m) with L, eigenvalue of Am and m =
—1,—(—-1),...,0,...,(l —1),l. There are (2] + 1) states.

. There is the following relation: |m — 1) = L L_|m). Simi-
fiy/ (1+m) (I+1-m)
. — 1 T
larly: |m+1) = h\/(l_m)(l+m+1)L+|m>.
. We can repeat this to write: |Im) = A=¢+™), / %ﬁljm\l, —[). Sim-

. . _ +—(-m Hm)! 7l-m
ilarly: [Im) = A0, [ LEm L),

The wave-functions of a particle in a potential V (r) are of the form:

¢(73 (9, ¢) = Rl(r)nm(ea ¢)

. To determine R;(r) we need to know the potential V(7). It then satis-

fies:
R> 1d { ,dR B> A

. To determine Y}, we do not need to know V (r).

. There are (2] + 1) different values of m for any given value of [. These

values are m = —1[, ..., 1.

. For different I’s one can, in general, have different wave-functions R;

and different energies F;.

For a given [ there are several solutions Ry, (r) and energies Ej,.
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6. For each such solution, there are (2! + 1) corresponding states all with
the same energy and radial part Ry, (r). They differ just in the value

of m in Y},.

33 The wave functions

We can find the wave function |/,[) by writing:

. w0 0
Lyl =0= ew(% +icotf %)wu(a,qs) =0

since 1y = Y (0)e® we find:

Y' —lcotfY =0 =Y = csin‘f.

34 Half integral spin

If we are talking about a wave-function v (z,y, z) of a particle we have seen
that m must be an integer because the wave function must be periodic in ¢.
However, if we just have operators jw, jy and J, with the same commutation
relations as f/w, IAJy and L, we can have more possibilities. Let us assume that
we have a finite dimensional Hilbert space for which such a triple of operators
with the given commutation relations exist. This will be relevent to spin—%
particles. As before J, and J? commute and we are looking for states which
are mutual eigenstates. As before if we start with a state and apply j+ many
times we eventually get a state |j,j) such that j+\j,j) = 0. For this state,

we have seen that
Pl3,5) =BG+ D35, Jld. ) = hild, 5)-

j does not necessarily have to be an integer. Now we apply J_ and obtain
the states:

|]7]_1>7|]7.7_2>7:|.77m):

This would have to stop once we reach a state that satisfies

J_|j,m) =0=m = —j.
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On the other hand |j,m) is obtained from |j, j) by an applying J_ an integer
number of times so:

Jj — (—j) = 25 = integer.

The smallest value of j is j = 0. The next possible value is j = % This
system has two states:

j=gm=tyh  li=
]_Z:m_ 27 J =

These are often denoted as:

1), 14)-

jw, jy and J, are denoted in this case by 5}, S’y and S,. Given what we said

above, once can find how S; act in this basis. They act as follows:

. R . B .
Sy = 20 Sy = 2% S, = —o,.

The Pauli matrices are given by:

(01 (0 — (1 0
%“=\10) %T\(i o) =T\lo -1)

Note that they are Hermitian matrices with eigenvalues £1.

35 Generators of rotation

An infinitesimal rotation of a system around an axis 7i and by angle € (counter

clockwise) is given by:
w(new) (F) — w(old) (F—Cﬁ x F) — w(old) (7:') . (Gﬁ % ,,:*) _Vw(old) — (1 € X V)w(old)
So an infinitesimal rotation adds:

—%eﬁ - L.

A large rotation can be written in terms of Euler angles o, 8 and . It is

useful to define the following functions

Dg’)m(aﬁv) = <]7 ml|e—%ajz 6_%Bjy€_%7jz |J, m) = e_i(mlo‘+m'7) <]; m,|€_%ﬁjy ‘]’ m)
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36 Matrix elements of position and momen-
tum

The purpose of this section is to get some general features of matrix ele-
ments of vectors. We have seen that the wave-functions are in general of

the form
1/1(73 05 ¢) = Rln(r)Yim(ea ¢)

Here n denotes a general “tag” to indicate that there are several (perhaps a
continuum) of solutions to:

EpRyp = ——— 5 — [r*— —Rin + V(r)Rin,
i oM rZdr \| dr 2l +V (N E

R 1d [ ,dR\ B )
2M r

for a given [.
Let us denote this state by |nim). Let us take another state |n'l'm').

We wish to consider the following expressions:
(n'l'm'|Z|nlm), (n'U'm’|g|nlm), (n'l'm'|Z|nim).

As we will see later on in this course, such “matrix-elements” are extremely
important because they appear in questions like: what is the probability
that the particle in state |nlm) will absorb or emit a photon and
thereby enter the state |n'lI'm')?

It turns out that there are some general features of such matrix elements

that can be stated without knowing V (7). We have the following expressions:
(n'l'm!|Z|nlm) = / W1 S0 0 €OS @ Vg dr sin Odfd
= /r?’R;,l,Rnldr / Y, Yim sin 0 cos ¢ sin dfd¢,
(n'I'm/|g|nim) = / Vs SN 0 8IN G Y2 dr sin Odfdp = - - -,
'lm!|3|nlm) = / D €08 O Y2 sin §dOdp = - - -,

They all have a piece [r*R},, Rydr that is impossible to calculate without
knowing V' (r) but is independent of m and m’. They also have and another

piece that can be calculated without knowing V' (r):

/ Yy Yim sin 0 cos ¢ sin 6dfd, / Yy Yim sin @ sin ¢ sin dfd, / Y, Yi, cos 6 sin 0dOd¢.
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Let us define:
Ty =2 £17.
Let us calculate the commutation relations:
[Li,24]=0 [L;,%4] = Ay [L—,53+] = _th
[Ly,2_|=2hz [L,,2_|=—-hi_ [L_,2_]
[Ly,2]=—hiy [L,,2]=0 [L_, z] =
What does that mean? Let us start with (n'l

‘3"

i
I'm!|Z4 |nlm). Note that:

L,y |nlm) = &, L,|nlm) + (L, &,]|nlm) = B(m + 1)|nlm).

So (n'l'm/|&4|nlm) = 0 unless m +1 = m'. (Eigenstates with different
eigenvalues of L, are orthogonal.) Similarly, (n'lI'm'|_|nlm) = 0 unless
m —1=m' and (n'I'm'|Z|nlm) = 0 unless m = m/'.

We continue to calculate:

l—m
(n'l'm!|&, |nlm) = h_u+n0\'ﬁ4i7ESYlff<nl’ m'|#, L™ |1, —1)

— —(l+m) (l B m)‘ 1 7l4+m _
PN Ty m| L4 g L =),

Now notice that:

Loty = i+ )+ 1= m) L4 ) = -
= pitm W +m)i+1 - I)' In'l'(m' — 1 —
+m —1—m) (' +1—m' —1—m)!

So unless
m—-l-m=1—-1>-1'"=10'>1-1,

The matrix element in question is zero. Similarly we can start by writing
[n'l'm’) using L'~ |n'l'l') we find:

I>m+l-m=I'-1=1<I[]+1.

We can also obtain relations [ > I' — 1 and [ < ' + 1. To do this, we start
with:

o,y — —'+m') (ll_m) Ll’+m 1
In'l'm"y = h \l—(l’+m’) 2] [, =1
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Now we have to use:
Lrma =g LM o' +m sV ™ L — B2 (' +m!) (I'+m/ —1)&_ LV ™' =2,
To see this we write:
LAme, = LY UL g, + L9 e, L
= [M™VL g )+ LY ey Lo 4 D™ 2, 12
= o= LD ey )+ LR L] gy )L 4 4 (Lo, ey LY
= LIt 1z opLVA™ 3L — ...~ opaLVmL
Now we repeat the same procedure with
LFz = LFMYL_, 34+ LF 30 = LF Lo, 3] + L¥?[L_, 3L + LF2212
= = LFNL A+ LR 5L 4+ (L, 2| LR
= +hL* i +hL* % L+ -+ ha LE
= KkhlF 3.
Now all L_’s appear on the right. The matrix element is zero unless:
m—(0U+m-2)>-l=1>1'-1
To sum up:

1. The matrix element (n'l'm’|Z,|nim) is zero unless m' = m + 1 and
|l —1'| < 1. Note that it is also zero for [ ="' = 0 (Why?) because
m' = m + 1 could never be satisfied.

2. Given any one element (n'l'(m + 1)|Z|nlm), one can determine all
the other (n'l'(m' + 1)|Z,|nim’) element as multiples by known coef-
ficients. Ome can also determine all other (n'l'(m — 1)|Z_|nlm) and
(n'l'm|2|nlm) for the same [ and !’ values. Note that we cannot relate
the coefficients to other [ and !’ values.

37 Other vectors

In fact, the general statements that we made are true for any vector quantity.

What is a vector? Notice the commutation relations:

[_ii, .f?]] = ’Lh Z Eijkik
k
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Any set of three operators v, 92 and 03 that satisfy the 9 commutation rela-

tions:
[Li, @J] = Zh Z fijk@k
k
are called the components of a vector. Other examples are the momen-

tum, p,,p, and p, and the angular momentum itself.

Physics 505
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Ori Ganor
Electric and Magnetic fields
38 Maxwell’s equations
We will work in cgs units. Maxwell’s equations read:
. o . - . - 10B - == 1- 10E
-E = -B=0 EFE=——- B=-J+-—.
\Y p, V , VX cat,Vx c+08t
The force on a particle is:
dv - q -
— =qF + -7 X B.
M — 1 * ¢’ %

For electric fields (with B= 0) one can define a potential V' such that:
E=-VV.

For magnetic fields one can define a vector potential A such that:
B=VxA,

There is a gauge freedom in the definition of A. If we take any function A
and define:

<

A’l == E‘f‘ A
we get the same VxA =VxA.

For nonstatic configurations one can still find a vector potential but this
time:

— =

B=VxA E

Il
4
<
I
|
|



We also define the flux through a surface as:

@:fé-dA:fjf-dsﬁ

39 Electric fields

Including electric fields in Schrodinger’s equation is done in two steps. First
we find an appropriate potential V' such that £ = —VV and then we set
the potential energy to ¢V where ¢ is the charge of the particle. Thus the

Hamiltonian for schrodinger’s equation for a particle is an electric field is:

The classical equations of motion are replaced by the closest thing we can

get in QM — averages of operators.

Thus: J . )
%@) = ﬁ([H, ) = E@)’
and 4 '
(3 = T{(H,5) = ~(@VV)

40 Magnetic fields

Suppose we have a particle in a static magnetic field B (independent of time).
How do we describe it with Schrodinger’s equation? The immediate problem
is that in general there is no potential energy associated with a magnetic
field! To find the solution let us start with:

=2
=2
2m

and see what extra terms we have to add in order to describe the magnetic

field. What will guide us? The classical equations of motion should be

satisfied on average. As a first try we write:

d - q

=) — Ly

mc

—
~

x B).
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Here we treat B as an operator. Note that in general:

xé—éxﬁ:—ihﬁxéﬁéo,

k<]

so we should be careful whether we write 1—5 x B or B x 1—5 However, if we
set J = 0 and %—? = 0, Maxwell’s equations tell us that V xB =0 and
5 x B =B x 5 It is convenient to denote:

0
Pr = —th—, k=1,2,3
c‘)xk

We need [H,#;] to be linear in 4. Let us first try:

s 1 &, g o
Hi=—)> pi— Q—WZ(pkAk + Appr,)

k=1
Here A are three operators that are functions of Z1, Z9, 3 (but not the p’s).
We have written ﬁfl + Af) to make the Hamiltonian Hermitian. Now we
calculate:
(5] = —5— S melAk i) — 5= 3 [Ax, 5
2me 2me
1hq . 8z‘ik 5 a/‘ik
2me 4 Pr 0z Pr ox; )

Ay
ox;
as a function (not as an operator) and then replace each z; in the result with

In this equation means that we first differentiate A, with respect to x;

the corresponding operator z;. Now we can calculate:

*a_Ak_FAa_Ak
pk&nj pkaxj .

Do = i p)) = - 3
dt P = AP - 2me &

Let us calculate the components of 7 x B:

- 0A; 0A;
ix B); =3 (vt — 221
(T x B), ] (vk oz, Vg &L‘k)

So, classically,
dp; ¢ j
dt  mec ; Pr 0z, Pr Oz,
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Tt seems that H; gives us only part of what we want! But something else
has changed! Let us calculate what is v in the presence of a magnetic field.

We can calculate the quantum-mechanicial analog of the velocity from:

d,. T,
Za5) = £([H, 2

2 g FOIN A AR q A ra A
H 7] = 2 _* 1A, — —5N"A :
[Hi, ] [zpk, ] 2mc§k: [Pk, 2] Ak ome Zk: k(DK T5]
ih . thq -
= ——Dj + —Aj
m mc
50 d 1
X N q .
i) = B = _Aj)
and we should make the replacement:
. g 'y
muvj — pj — EAj = —zha—xj — EAJ-.

Note that the momentum is mwv;, however, our conventions will be such that

we keep the definition:

0

Thus p; is no longer the kinematical momentum. It is sometimes called

canonical momentum. Now we can calculate:

d . T,n . Q4
m@(“j) = ﬁ([Hl,pj—gAjD

i A N q B/ik 6/ik
ST . 5 = 1
h[ 1D 2me 5 (Pr g, Ox; +pk8x])
1q  ~ A i
——[H{, A;] =
hc[ 1 Aj] 2mhc[2pk’
A "‘12 i A
q N 814] BAJ A j
— A
2me zk:(pk 0xy, + axk c? Z o)

Altogether we find:

d, . ¢ (94, A,
m%@»  2me (P (8:)3] axk>>



2me P 0xy,
) .
q9 2.3 B_2 q » 04
= 1 B-B 4 94
2me (P x xP)+ mc? <; k 3xk>
) R
9 2. 3 Bg_.= q » 0A;
= - B — —
ch(v x B X 0) + mc? <zk: k 0z; )

The linear term in A (i.e. the one containing E) is OK. However, we get
an extra term to cancel. We can do this by adding an extra piece to the
Hamiltonian so that:

2
~ A q ~ A A q s
H=— 2 1 A+ A AL AL
om Dy chzk:(Pk kT kpk)+2m02; kAL

41 Summary

1. To describe a particle in a static magnetic field, we need to find a vector
potential A such that B =V x A.

2. The classical velocity should be replaced with the Hermitian operator:

3. The Hamiltonian is:

4. In the presence of both electric and magnetic fields we must find the vec-
tor potential X(xl,a:g,xg,t) and V(x1,z9, z3,t) such that B=VxA

and E = —VV — %aa_;f_ We then set v, as before and
. 1
k

42 Commutation relations of velocity

We can calculate [0, U]

ih 0 qg . ih 0 q -
b)) = [ % 44 Y 43
(35, &) mox; mc 7’ mdx, mc g
th aAk 6/1] Z(]ﬁ 3 ~
- _ - B
m2c ( Or;  Oxy m2c 1:21 CkL

90



Here B is the magnetic field operator. Using this commutation relation it is
easier to check that the equations of motion are satisfied. However, we will
have to use Ehrenfest’s rule for operators that have explicit time dependence

because ¢ contains A(zx,y, z,t) that depends explicitly on time. The rule is:

L0 = (00N, + (D),

Here the subscript ¢ means that we evaluate the expectation value at time

t. The expectation value (O(t)) depends on time both because O(t) depends
explicitly on time but also because the wave-function v¥(z,y, z,t) depends on
time. We find:

d,. (RPN 00 (t

Loty = L@+ (220,

We now calculate:

T .~ im . 1 .
ﬁ[Havk] = ﬁ[;vlvlavk]+%[qvavk]a
and
m . m m o Ta
ﬁ[z Oy, O] = % O[Oy, Ok) + o 5% Z[Uhvk]vz
1
= Zﬂk Al)z—q (Uxé—éxﬁ)k
2mc J 2mc ’
_ q 8V
ﬁ[qV o) = m 0Ty,
Oin(t) _ _ q 04
ot " me Ot
Altogether we find:
d - . q9 = = 5 R q , =
%<U>_2—7’)’),C<UXB BXU) m<E>

43 Constant magnetic field and Landau lev-
els

Let us solve the energy levels in the case of a constant magnetic field. We

can take it to be in the direction of z = x3. We can then take A to be:
A=A, =0, A, =A, =Bz, A3=A,=0,
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Schrodinger’s equation becomes:
L (.o . q 2 | A2
5 (724 (6 — 2Boy + 52)| v = By
Note that:
[H,p,) = [H,p:] = 0.
This means that states can be characterized by specific values of p, and p,.

So we look for functions of the form:
U(z,y, 2) = er PP ().

We see that the equation for ¢(z) becomes the Schrédinger equation for a

harmonic oscillator centered at

PyC
Ty = ——.
0 4B
The angular frequency is:
qB
w=—.
mc

The energy levels are: ) bon
1
QP—;L + %(n + 5).
The energy is independent of p,. These are called Landau levels. There is an
infinite number of levels for each n and p, because p, can be arbitrary.

We can compare this with the classical formulae. Classically, the tra-
jectory is a helix. The frequency w is the classical angular-frequency of the
projection of the trajectory on the x — y plane. It is not a surprise that we
get a harmonic oscillator. The projection of a circular motion with constant

velocity is a simple harmonic motion on each coordinate.

44 Gauge transformations

The results above seem puzzling at first! Since B is only in the z-direction
we would have expected x and y to enter on an equal footing in the wave-
function! In fact this puzzle is the tip of a bigger issue.

There are different forms of A that would give the same B. Given A we

can replace it with:

-

A— A = A+ VA,
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where A is an arbitrary function of space. However, Schrodinger’s equation
is obviously changed! Could it give the same wave-function? The answer is

NO! However, If 9 is a solution of Schrédinger’s equation for A then:

will be a solution for A+ VA. Moreover, expectation values of velocities will

not change because:

When we calculate (0;) the phase will cancel out.

45 Linear approximation and dipole moment

Let us consider a particle in a constant magnetic field but with an arbitrary

electric potential V. Let us set:

1
A = 5 Z €kim BiTm.
Im
It is not hard to check that this will give B =V x A as it should. Now let
us check, to linear order in B;, what is the effect on the Hamiltonian. The
extra term due to A is:

__ 17
4Mc

-
q — ~

A A q &
3" ekim Bi(dm m)=—=— Bl =— B-L
€xtm Bi(ZmPr + Prim) 2Mc e 2Mc

klm
For example, if the potential is spherically symmetric we can take B in the
z-direction (we just define our z-direction to be the direction of B. We find
that, to first order in B, the wave-functions are characterized by |nlm), as
in the usual case of a spherically symmetric potential, but there is an extra

addition to the energy:

hiq

Epim = Epy —
nlm nl 2Mec

Bm

where E,; is the energy without the magnetic field. QLMCIA/ is called the mag-

netic dipole moment.
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46 Interaction with spin

The magnetic field has a similar effect on particles with spin. In addition to

what we found previously, we have to add an extra term

q N
—B- 5.

Js 2Mc
However, we have to add the Landé factor g, that indicates some internal

structure. For electrons
gs = 2

to a very high degree of approximation. The factor of 2 can only be explained
from the relativistic theory (i.e. the Dirac equation)! There are extra minute
corrections that follow from QED. For protons we have the factor 5.59. The
value in excess of MLCS' is called the anomalous magnetic moment. It is
1.79¢/(myc) for protons. Neutrons are uncharged but they are composed of
charged quarks which create a magnetic dipole moment of:

(&

S
2M,c

M, = —3.83

for neutrons.
Returning to electrons, we found that, to linear order, an electron in a

magnetic field is described by the extra term in H:

q

p— _’. T O 2
2McB (L+2S)+0(B).

The full Hamiltonian for electrons in any (not necessarily constant) electric

and magnetic field is:

\e\—‘ 2

H=-MY t2+q¢V+--B-S.
k

DN | =

Me

Here S is the spin-operator (described by three 2 x 2 matrices).

47 The Aharonov Bohm effect

We now turn to an interesting and important QM effect that is nonlocal. Let

us take a cylinder with axis in the z-direction and with radius R. Suppose we
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arrange the potential to be oo inside the cylinder such that a charged particle
will never be able to enter the region 2% +y? < R2. The particle is described
by a wave-function 1 (z,y, z) that is zero inside the cylinder. Suppose we
turn on a magnetic field that is only inside the cylinder. We can think of
putting a concentric solenoid inside the cylinder that creates a magnetic field
in the z-direction such that the flux lines stay inside the region 2%+ y? < R2.

Since B = 0 outside the cylinder we might guess that the magnetic field
has no effect on the particle! In Quantum mechanics this is wrong! Although
B =0itis A that enters Schrodinger’s equation and not B! Let us calculate
A outside the cylinder. For simplicity, let us assume that the magnetic field
has cylinderical symmetry, although this is not imperative. We have:

@:/E-dA:]{E-d§=>E:ié.
2mr

Here 6 is a unit vector in the angular direction and 7 = /2% + y2. So now
we can find 9 (z,y, 2,t) that satisfies Schrodinger’s equation with this A. On
the otherhand, we can pick a gauge transformation:

P
A=——02~0.
27
We can then define: 1Z = e%Aw = 6%01/1 and 1; satisfies the free Schrodniger
equation because: A=A+VA=0. So, it seems that B has no effect on the

particle after all. But this is wrong! % is not a single-valued function of 6.

Its boundary conditions are:

B(0 = 21) = e (6 = 0).
In other words: A particle that passes the region with flux ® from the right
picks up a phase relative to a particle passing from the left. The phase is:
q®
e
If ® is an integer multiple of
®, = 2mhce
q
then there is no phase difference. The quantity:
2mhe
lel

= 4.135 x 10 "Gauss — em?

is called the fundamental unit of magnetic fluz.
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48 Diagonalizing a 2 X 2 matrix

We start with:

and add a small correction:
Vii Vig
V =
( Vis Voo )

The exact eigenvalues of H = Hy + V are:

B+ Vi +E2+V22:’I\/(E1+V11 — By — V)2 + 4|Vio)?
2

Let us assume F; < F,. For small V' we can expand:

Via|?
Ey — E;

Ei=FE + Vi — +O(V)3, Ey=Ey+ Vo + +O(V)3'

49 An n X n matrix

Now take the Hilbert space of n-component vectors such that the operators

are n X n matrices. Take:

E, 0 -+ 0
0 Ey, --- 0
Hy = ) . )
0 0 - FE,
and a small correction:
Viin. Vie ... Vo
Vi Voo oo Van
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An eigenstate for the j energy level is given by:

a

We assume that the a;’s are small and of the order of V. Note that v is
not normalized. We can defer normalizing it till the end. Let us look for the

correction to the ground state:

az

an
We can try to solve:

(Ho+ V)Y = (E1 +61)¢

To first order in V' (and keep in mind that a; and § are also of the order of

V') we find the equations:

Ei+Vii = Ey+6d,
Vor + Eaay = FEiay,

Vn1+Enan = Elana

The solution is:
_ VY
- By — Ej

Now we try to keep corrections of order O(V)2. We do this by writing:

o = Vi, a;

(Ho+ V) = (B + Viy + 62)¢

and setting a; = EIV+1E] + b;. We now treat J, and b; as quantities of order
O(V)%. We find the equation for the first element:
V.
B4V +Y Vijmt e =B+ Vii + 6y
E, —E;
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This implies:

|V13‘2
6 —
2= 5 & E,—E;
For the second element we find:
Vor \Z
(El + Vn)El 7, + Eiby = Vo + (Ez + V22)E1 21E2
Vi
E
+Esby + Z Va; B - E

From this equation we can find bs.
To summarize, we found that up to second order in V', the energy of the

kth level is: \
|Vik|

k= Ej

i#k

+O0(V)?

50 The correction to the ground state

Note that if V3; = 0 the correction to the ground state is always negative.
There is a good reason for that. The ground state energy E] can be defined
as the minimum of (| H |¢)) over all possible (normalized) states [t). To see

this expand [¢) in the basis of eigenstates of H:
¥) = chln (WH) =Y |eal’ By > B

In our case, we can choose

=g ) = Bi= iAo 2 B

51 The secular equation

The arguments above fail if there are two eneries such that E; — Ej is small
(of the order of V).

In particular if E, = E; for two different states k # [, we get a zero in
the denominator for one of the terms in the correction to the energy of the

k™ state: \
Vik|

A L1 3
g g oW

Er + Vi + Z
7k
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Thus, we have to reconsider all our arguments. What is the assumption
that was wrong in this case? The wrong assumption is that all a;’s are
small. To see why this assumption is wrong, let us consider the case Fy = F;

first. Then, to first order any vector of the form:

(%1
V2

b= 0
0
is an eigenstate. There is no guarantee that after we add V to H, the

eigenstate will be of the form:

(with small a;’s.) However, if all other energy levels Ej are different from F;
and E, and moreover, all differences Ey — E; (and therefore also Ey — Es)
are much bigger than the order of magnitude of V', we can expect the exact

eigenstate to be of the form:

aq
(6%)
p=1 o |,
Qn
with as, ... small (of the order of V') but o and ay need not be small!

Our first task is to find oy and ay and from there we will proceed as before.

To first order we can ignore all the a;’s. We are left with the equation:
E1 + V11 V12 (03] _ EO{1
Vi Ey + Vo Qo Fa,

o B Vit Ba b Voo (By + Vs = B — Vo) 4+ 4|Vial?
B 2

We find:
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Note that the square root is of the order of V. We can also set:

Ei+Vi—-E E2—E1+V22—V11:E\/(E1+V11—E2—V22)2+4|V12|2
‘/12 N 2V12

ap =1, Qg =

In general s is of the order of 1. We see that we get two states with energies
that are close to E; (and hence FEy) up to O(V) corrections. The two states
have different ay’s (according to which of the (+) signs we choose). If ) = E,
we say that the states are initially degenerate. In this case, generically, E]
will be different from E) after we include the perturbation. The difference
will be:

B, — By = \/(Vi1 — Vao)? + 4| V1, ?

We say that the perturbation “lifts” the degeneracy.

52 Polarizability — the Stark effect

As an example of second order perturbation theory Let us discuss what hap-
pens to an atom in a small external electric field. An atom with n electrons is
described by a very complicated Schrodinger equation with the Hamiltonian
operator:

N ﬁf Ze? e?

Bo= 2o P 2w T LR
(There are small, relativistic corrections to this, like spin-orbit interaction,
that we will disregard at the moment.) The wave-function of the elec-
trons is ¥(71,...,7n,01,...,0,) Where o1,...,0, are the spins. In general,
Schrédinger’s equation is too complicated to solve exactly. We will discuss
later in the course various features of the solutions. For now, we just need

the general statement that the operator of (orbital) angular momentum:
L= 7ixp
i

commutes with the Hamiltonian and is therefore conserved. The term con-
served means that its expectation value in any state does not change with
time. Since ﬁz and L2 commute with each other and with the Hamiltonian

we can find eigenstates of H that are also eigenvalues of L, and L2. For a
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given value of L, and L? there can be several (in general an infinite number

of) states. We denote the states by |nlm). Their energy is E,;. We have:
L?|nim) = R21(1+1)|nlm), L|nim) = hm|nlm), Hnlm) = Ey|nim).

How do we know that F,; doesn’t depend on m? Because we can check that
1

A /(L= m) (1 +m+ 1)L+|nlm>

Inl,m+ 1) =

has the same energy as |nlm), since [L., H] = 0.
Let us also recall another fact from our study of angular momentum. We
defined a vector to be any collection of three operators 9; (i = 1,2,3) with

the commutation relations:
[LZ', ’17]] =1h Z eijk@k.
k

We then argued that all the matrix elements (n'l'm’|0;|nim) for fixed n,n', 1, !’
are related to each other by known factors. Note that what we are saying
now is a stronger statement than what we said before. Now we are talking
about a multiparticle system.

We have not shown this but the coefficients of proportionality can actually

be determined. The result is as follows:
(nlm|v,|n'lm) = Cprum, (n(l + 1)m|v,|n"lm) = Dy V12 — m2.

Here C' and D are constants that depend only on n,n’ and [ but not on m.
Now we can ask what happens if we turn on a small electric field. This

is described by the perturbation:
V=-€-d  d=—|e|37
We can take € to be in the z-direction in which case
V =-&d,.

Now we can calculate the first order correction in perturbation theory to the
energy levels. At first it seems that this is degenerate perturbation theory.

We need to diagonalize the (2] 4+ 1) x (2] 4+ 1) matrix with matrix elements:
(nlm!|V |nlm).
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However, d is a vector operator. Thus (nlm’|V |nlm) = 0 unless m = m’. So
the matrix is always diagonal. We can actually say more! (nlm|V|nlm) =
0 as well!l This is because of parity. Parity, P, is another operator that

commutes with the Hamiltonian. It acts on the wave-function as follows:
P:p(fly ey Ty 01y ey Op) > (=T, ooy =Ty 01,y oo Op).

It commutes with the Hamiltonian and with L, and L? (Why?). Therefore,

the energy eigenstates |nlm) can be taken to have definite parity. Let us

calculate a few properties of P. First we need to know that Pt = P. Thisis

because:

(Palby = Z/de‘wa(—ﬁ,...,—Fn,ol,...,an)w,,(ﬁ,...,Fn,al,...,an)

= Z/Hd?,f'iwa(f’lv"'7Fn70-1:"'70n)*¢b(_F17-"7_Fn701:"'70n) =
o

Next we need to know that: ]?’czzl3 = —czz. This is easy to check on wave-

functions. Now suppose P|nim) = (—1)F|nim). We can calculate
(nlm|d,|nlm) = —(nlm|Pd, P|nim) = —(Ptnlm|d,| Pnlm) = —(nlm|d,|nlm).
So (nlm|d,|nlm) = 0.

The conclusion is that to first order of perturbation theory there is no
correction to the energy levels of the atom.

What happens to second order? In principle, we should worry again
about secular perturbation theory (i.e. having degenerate states). However,
d, has nonzero matrix elements only between states with the same m. Thus,
effectively we need to diagonalize a matrix which is a small perturbation of a
matrix with distinct eigenvalues. (There is an exception to that case, which
is the hydrogen atom where there are degenerate energy levels with the same

m. We will not discuss this today.) We thus have to calculate:

(! I'm|V |nlm))|? (n'l'm)|d,|nim)|?
>

—ey |
'l nl - En’l’ 'l Enl - En’l’

Now recall that (n'I'm|d,|nim) = 0 unless |l — I'| = 0,1. We obtain
[('I'mld.|nim)|? Z [(n'(1 + 1)m|d,|nim) ?
En — Eny En — En’(H—l)

|(n'lm)|d,,|nim)|? Z\ n'(I — 1)m|d,|nlm)|?
’ En — Enn En — En’(l 1)

n'l’

+

n
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Using the expressions above for the matrix elements of d,, we see that the

result is of the form:
1
AEnl = —552(%; + bnlmQ)

Here, a,; and b,; are numbers that can be calculated numerically. Moreover,

the correction to the ground state energy is of the form:

1
—§a€2, a>0.

What does @ mean? Recall from classical EM that a dielectric material in
an electric field becomes polarized with the polarization being P= (e— 60)5 .
If we gradually increase the electric field, we recall that the energy increases
by dE = —P - d€. Thus, the energy of a material with polarizabilty (¢ — €)
is —2 (€ — €)E2

What we just did is calculate the dielectric constant of a material from

first principles!

53 Force between atoms

Consider two atoms that are very far apart at a distance R. What is the
force between them? If we think about atoms as spherically symmetric balls
of electron charge, then there shouldn’t be any electric field outside them
and there shouldn’t be any force! However, in QM the story is different!
Let us take Hy as the part of the Hamiltonian that describes the non-
interacting atoms. Now, each atom has a dipole electric moment operator.

Call them d and d'. The electric field away from a dipole moment is:

3(d-A)F = (rA)d

7o

£ =

The potential energy of the interaction between two dipole moments is:

3(d-7)(d-7) —r(d - d)
7-5

—d-E=

Now let us take 7 in the z-direction. We see that the perturbation is:



As before, the first order correction to the energy is zero because the expec-
tation value of d, czy and d, (as well as CZ;, CZ; and cf’z) are zero in a given
energy state of each atom. Suppose both atoms are in their ground state.
We denote this by |0,0). Let |n,n') be the state where the first atom is in
state |n) (a collective name for all quantum numbers) and the second is in
state |n'). We have:

(1 [Vn, ') = 5 ((nlda [n) (| dy|n')+(nldy ) (0’ |dy In') =2(nld. [n)(n'|d ).

1
=
Now we can write the correction to the energy of the two atoms as:
1

AE = ——¢ X;; %;0 By B, = By = E6|<nlcfx\n><n'|6?;ln'>+<nlcfyln>(n'lcfﬁ,In')—2<n\ciz\n><n'|<fé|n’>|2

We see that in general, the force is attractive and falls off as 1/R". We have

derived the formula for van Der Waals forces.

Physics 505
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Ori Ganor

Time dependent Perturbation Theory
54 The problem

We wish to solve:

L = (i + V(1))

Let us assume that Hy is independent of time. We search for a solution in
the form of a sum:
v = Z ak \Ifke ﬁE £,

Here W, are the eigenfunctions of H, with energy Ej. We find:
thak )Wpe Wkt = Zam(t)ef%EmtV\Pm = Zam(t)ef%Emt(kHﬂm)‘Ilk
m km
It follows that:

ihay(t) Ze (Em_Ek)tam(t)Vkm(t), Vim(t) = (k|V (£)|m).
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Now we can solve order by order. To zeroth order, we assume that all a;’s
are constant. For example, we can assume that the system is in a particular
state |j) in which case a;(0) = d;;. We are then looking for a solution of the

form:
ak(t) = 5kj + bk(t)
We treat by (t) as O(V) and neglect corrections which are O(V)2. We find:

il (t) = e + BB (1) + O(V)?
The solution is:
S ' ,
. bk(t) = _%/O dt' e #(Ei—Ep)t V;c].(t’)

Let us denote: )
wij = 3 (Br — Bj).

We find: o
bi(t) = —% /0 dt' it Vi, (1)

55 Periodic driving force

Now let us take:

A

V =Ue ™t 4 Uleit
We integrate and find

*

ei(wkj —w)t _ 1 ez’(wkj—l—w)t -1 U
h(wgj +w) *

be(t) = — ki —

h(wrj — w)

This implies that small perturbations create a certain probability to
change to another state (state k). The probability |b(£)|?, to find the particle
in state |k) is oscillating with time. In nature, there are many transitions,
due to small perturbations, that do not seem to be oscillating with time.
We see that the denominator of the equation for by is zero if wy; = w. How

should we treat this case?
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56 transitions to the continuum

Let us suppose that E, — E; — hw is small. It is sufficient to consider only
the term with denominator wy; — w and neglect the term with wy; + w. We
find:

. Wi —w)t
2Sln2( k12 )

4
bel? = —|Up; [P——-2
‘k‘ hz‘ kj‘ (wkj—w)2

Suppose there is a continuum of states E;. Let us consider |bg(f)|*> as a

function of Ej. A larger and larger portion of this curve (of |b;|? as a function

of E}) becomes localized around Ey, = F; 4+ hw as t increase. Note also that:

00 ain?
/ sin”(xt) P

—00 372

So the total area under the curve increase linearly with ¢. Let Pg(t) be the

probability to be in the state |k) at time ¢. when ¢ is large, we can write this

as:
t2
Pi(t) = 55 Uil "I ((wr; = w)1),
where I(z) = 452122 2. As time goes by, I((wg;—w)t) becomes localized around

wkj = w. So, the vast majority of the probability is localized around states

|k) with wy; = w. We can therefore write:

d 27
£Pk(t) = €|Uk]|25(Ek — Ej - hw)

What does this mean in practice?

57 Transitions to the continuum

The continuum is made of non-normalizable states as we have seen in the sec-
ond week. In the derivation above we actually assume that |k) is normalized.

That’s because we wrote:

Vim) = 3" [k)(k|V |m)

k

If |k) is normalized as:
(k'|k) = 6(k — k')
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We have to replace the sum with an integral:
Vim) = [ dklk)(k]V|m).

(How do we know this? Multiply each side by (k| and check what we get!)
Now we know that at time ¢ the state of the system has a piece that can be

written as:
k+e i
| dkb (e it
k—e

What is the probability to be in a state in the continuum between |k — €) to
|k + €)? It should be:

2

k+e i k+e
/ kb () e A B O (K| = / k! |be (1) 2
k—e k—e

This becomes:

27rt k+e
7 . |Ukj‘25(Ek — Ej — hw)dk

The integral can be performed by changing variables from £ to Ey. We find

B
/5Ek— -—hwdk—/‘d k

-1 -1

dEy

6(Bx — By — hw)dBy = | =

As time goes by, the probability does not continue to increase linearly.
Rather, a;(t) starts decreasing too and what happens in effect is that a;(t)
decreases exponentially with time. The rate of growth of b, (t) starts decreas-

ing exponentially too because a,;(t) decreases.

58 Finite width

We have seen that the probability for transition to states near |k) increases

linearly as

r
P~ =t
h’
with )
o |dEL|T
T = 2n|{k|U|i)|? | —=
kD) |

This means that the probability to stay in the initial state |¢) must decrease

linearly. Eventually, when ¢ ~ A'"" we will find that a;(¢) is far from 1 and
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the approximation ceases to be valid. What really happens? It turns out
that:

and therefore

All the previous equations can be modified quickly by replacing:
Ej — Ej —ql.

Thus,
ei(wkj fw)tf%t -1 U ei(wqul—w)tf%t -1 -
Mwgj —w) + T kg h(wgj + w) + il 7

Now we can take the limit ¢ — oo and find that for wy; near w:

b(t) = —

U |*
(Ek — E] — FLLU)Q —+ FZ'

[br(00)[* —

This function is peaked around E; = E; + lw and the peak has a width of

size I'.

59 Summary

1. A perturbation of the form V = Ue~®! + Ute™* can cause transitions
from a state |i) to a state |f) if (f|Ui) or (f|Ut[i) are nonzero.

2. If state |f) is in the continuum then, as time increases, a larger and
larger portion of the transitions is going into states with E near E; £

hw. the transition probability increases linearly with time at first.

3. After a long time, the probability to stay in |i) decreases exponentially
to zero and the probability to be in any state |f) reaches a constant
limit.

To calculate the probability for transition from state |7) to state |f) in

the continuum, we have to:

1. Choose an orthonormal basis for the continuum and label it by a con-

tinuous variable |k).
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2. Make sure that the wave-functions are normalized such that: (k'|k) =
5(k — k).

3. The probability of transition from |7} to a state |k) with Ey = E; + hw
is given by the golden rule:

-1

dP 2 ~

dE
—_ = i\ |2 k
o = 7 |(kIUL)]

dk

4. Ast — oo the probability to remain in state |i) decreases exponentially.

The probability to end up in state |k) is:

[(K|U3)?
(B — B; — hw)? + T2

b (00) | —>

where )
dFE;,

I =27 |(k|Ui) > |22
T|(k|U i) T

is the “width” of the state |7).

60 The continuum — an example

This is a problem from the general exams of 1997. We start with the potential
V = —Xd(z). Let us denote:

The energy levels fall into three classes:

e A bound state with energy

K22 m\?
E() = — = —5
2m 2h

and wave function:

Yo(z) = V2ae™2l,

e Odd wave-functions with energy

h2k>
Ek: = )
2m
and wave-function:
) = sin ka.

69



e Even wave-functions with energy

h2k?

F,. =
k 2m

Y

and wave-function:

) = cos(k|z| + ), tan o = %.

Now let us check the normalization:

[ vo@) v @z = o,

/1/1 (+) acosdy — ksindy
a? + k2 B

To check the normalization in the continuum we will use:
/ K2y — oms(k — k).
This implies:
/sm kx sink'zdr = —i (e“” - e_“”) (eik'm - e_“”) dr = w(0(k—k")—0(k+k")).

We can actually assume that &, k' > 0. In which case we find
/sin kx sink'zdr = 7wé(k — k).
As for 1)) we need to express it as:
= /f;C (u)e™du.
Then we can write:
/1ﬁ,(c+) (l‘)*l/),(j—) (x)dz = /fk(u)*e_i“mfk/ (v)e™ dxdudv
= 27r/fk(u)*fk: (v)0(u — v)dudv = QW/fk(u)*fk/(u)du.

To find the Fourier tranform we need the Fourier transform of a step function.

We observe:

— lim / kg,
27m e—0J) k — ze

o e—>0/ k+ ze
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Here:

1 forxz>0
0(3:)—{0 forz <0

Now we can write:

1 . . . . 1 . . . .
COS(/ﬁO‘.ﬂ—{—(S) — §(ezk0z+z5+e—zk0z—zd)0(x)+E(e—zkoz—{—z&_}_ezkoz—zd)e(_x)

1 1) —id ) 6—15
— _/ _ 4 _ — — — | e’ dk.
47 k—ky—ie k+ky—ie k+ko+tie k—ky+ie
So:
1 eZ(Sk e—ZJk el5k e*Z(sk
f’“(u)_@/(u—k—z‘e+u+k—z‘e+u+k+z’e+u—k+z‘e)'

Using the integrals:

du
/(U—a—ie)(u—b_ie) = 0,

du _ 0
/(u—a+ie)(u—b+ie) -

/ du . 211
(u—a-+ie)(u—b—ie)  b—a-+2ie
and the equations:
a(k' — k)
V(a2 +k2)(a? + k%)
a(k' + k)
V(a2 +k2)(a? + k7?)

Sin(ék — 6kl) =

Sin(ék + 6kl) =

We can find the normalization:
[0 @) v (@)de = mo(h — K).
61 Example of time-dependent perturbation
theory

The problem from the generals of 1997 continues as follows. We turn on a
small perturbation V (t) = Uz coswt. Find the rate of transition in the first

order approximation.
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In our case:

A 1

U can only induce transitions to the odd states with wavefunction w,(c_). This

is because:

/ 1/’19 x) o (z

We now have to calculate (k|U|i). We have to normalize |k) to have wave-
function - sink so that (k'|k) = d(k — '). We calculate:

A 2o \/ﬁkag’ﬂli
N[22 ; —alg| g, — V2V ¥
(k|U|7) U /:Esmkxe dx f(k2 22

Therefore: U2k
I o
(RITE = 2o
dE,[" _m
dk Rk’
dP  2r dE,["" 4m|Uko®
— —|(/€|U|>| =909 i
dt dk R (k% + a?)
Physics 505
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62 Classical

Classically, we find the deflection angle, 8, as a function of the impact pa-
rameter, b. We then find b(6). To interpret experiments, we need to calculate
the cross-section:

db

do = 2mbdb = 2mb(6) —-do.
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63 Perturbation theory — Born aproximation

We start with the state \/;) and wish to find the rate of transitions to states
k"), The result is:

dP 27 - -
T = Rt \ 2 , 3Lt
) (K'|U4)] /5(Ek Ey)d’k

Let us take k' to be within a small d of angular region. Then

/ §(Ey — E)dK. = / §(Ey — Ep)K2dK'd9

3/2 3/2
_ Vom / §(Ey — Ey)Ey*dEdQ = ﬁ;}f E}?d0

h3
k
- ”;—de.
We find: AP 9k
mmk = o~
Fri T|<k'|U|Z>|2dQ
The cross-section is related to the rate after dividing by the flux:
@da = E,
m dt
so:

2mm? - A
do = =~ | (B |01 a2

What is (k'|U]3)? For |i) we choose the wave-function:
i) — e'*?,

This is normalized so that the rate of “particles” going through area A is
?n—'“A = vA. Recall that the normalization for the final state, | f), should be:

(K"|E"Yy = 6O (k" — &) = 6(K! — KL)o(kll — k,)S (k! — K.).

This means that we should take:

1 ik 7

\k/> — (27)3/26

3/2

The normalization of (27)°/* is because we are in 3D and not 1D. We find:

2

do <2

/ U(F)ei(EI_E)'F

m2
 4n2pt
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64 Beyond perturbation theory

We are looking for a solution to the time-independent Schrodinger’s equation,

that far away from the scattering center, that is, for » — oo, behaves as:

eik'r h2 ]{32

U — 1(0,0) 5 + et

The differential cross-section will then be:

do

So for a spherically symmetric potential:

E.

’ 2m

do = 27 sin 0| f(0)|*df.

65 Born aproximation and Green’s functions
We seek a solution in the form:
Y= 1/}(0) + w(l)’ ¢(0) — eiE-R

We need to solve:

Vo 4 k20 = 277?2[] ol
We find: i(k-7+k| R—7)
VOB = =5 0 [ U =g
We can write approximately:
IR—-7Fl~R—-7-@, = L
R
We find: B
YRy~ - UG
2nh? |R|
where k' = kii. Thus:
m .

To find the region of applicability of the Born approximation, we must require
M| < [¢©]. (See Landau+Lifshitz p153.) Let us assume that a is a typical
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size over which U is different from zero. If ka is not large, we can estimate

the integral as:

m|U|a?

W (R)| ~
(a® is an estimate for d*7 and a~! is an estimate for | R — 7] at points inside
the potential. If ka > 1 the oscillating factor damps the integral. We then

obtain the estimate:
mUa

W)~ ==

The conclusion is that the approximation is good when either of the two

condition holds: )

R
U(r)| < R
or -
U M
U < &

66 Spherical waves

Recall that the solutions to Schrodinger’s equation with definite angular mo-

mentum can be written as:

¢(7‘, 95 ¢) = Rk,l(r)yim(ea ¢)1

where:

1 1 2
4 (o) fo 2D 2] g g

r2dr \' dr 72 72

The asymptotic form of the function R; can be found by writing:

2
1d (rngl> :ld—(rRl).

r2dr\' dr

Let us first set U = 0 and solve. For [ = 0 we find:

d2
W (’I"R()) = kQTR().
The solution is: in(k )
sin(kr +
=A—7
Ry "
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The boundary condition is that Ry(0) is finite and that sets 6 = 0. The

normalization that we pick is:

/ Dpr 2 $in 0 d6 dd = S0, S(K — ).

2 sin kr
Ry = \/ — .
T T
One can show that

27t (1 .d\ sinkr k
R“:(‘”lﬁﬂ;a) 5 = Eest)

where J is the Bessel function. For large r the asymptotic behavior is:

2 sin(kr — 11
000
™ T

is also an eigenstate of the free Schrodinger equation with the same

This sets:

Since e*k#

energy it should be possible to write:
eikz — eikrcosﬂ — ZCleO(T)YEO(H; ¢)
l

(Note that only m = 0 appears.) The coefficients can be found by comparing

the coefficients of (r cos@)™. The result is:

¢ = (i)} (2l + 1)P(cos ) (f)l Ld ) sinkr
B = l k rdr T
How does this expansion behave for large r?
. 1 & 1
e ~ —>"4!(20 + 1) Py(cos 0) sin(kr — =Im).
kr =5 2
Now let us turn on the potential U(r). The solution Ry will, in general,
behave asymptotically (when r — oo) as:
sin(kr — Ll + 6))

Rkl ~ .
T

The phase shift, §;, can only be determined from the boundary condition at
r = 0 and therefore requires the knowledge of U(r). Now we are looking for

a solution of the form:

’(ﬁ = Z AlelPl(COS 9)
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that for large r can also be written as:

eikr

Y — e+ £(6)

-
We can calculate

Y —e* — % > Pi(cosb) {A; sin(kr — %lﬂ + &) — (21 + 1) sin(kr — %l’ﬂ')}

This must represent an outgoing wave. We can write the term in brackets

as:
1 i(kr—Lim) id 1 i(kr—§lm) —id ]
—e!rr=alm[ 4,e — 3121 +1)] — —¢' [Aie™ — (21 4+ 1)]
21 2
and we find: A; = /(2] + 1)e!. Thus:
1 o0
— 3" (21 + 1)[e* — 1]P(cos 0).
2ik 155
Using:
27 /7r P?(cos#) sin df = an
o ! 20+ 1’

we can find the total cross-section:
" 2 Am .2
= 27r/ £(0)/?sin 00 = 23 3" (20 + 1)sin? 5,
0
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Atoms

67 Attractive Coulomb field

The potential energy is:
Ze?
U=——.
r

The wave-functions are of the form vy, = Ryi(1)Yim (0, ¢). The function R
satisfies:

dr?  rdr 72

2 2 1 2 Ze?
2R 2 (5 2 R

7



We make a linear change of variables:

r = Ap.
We find:
2 I(1+1 2mA’E 2mZ Ae?
prolp  WED g 2mATE, | 2mZAC,
p p? h hp
We choose A such that:
2mA’E B _1 A h
R: 4 2V —2mE’
We also denote:
) — 2mZAe®*  Ze* [ m
w0 r\—2E
Thus:
mZ2e
2h°\?

Now we find the equation:

p 4 p p?

|z-0

where R' = dR/dp.
In order to guess the solution it is usually useful to find the asymptotic
behavior for large and small p. For large p we are left with:
1 1
R ~ B= R~ e*2”.

To find the behavior for small p we try a Taylor series:
R = Z akpk+a
k=0
From the coefficient of a¢y we find:
ala—1)+2a=1l(l+1)=a=1,—(1+1).

Only o = [ satisfies the boundary conditions at p = 0. Thus R ~ p' for small

p. We now make the substitution:
R = ple 3" P(p).
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P satisfies:
pP"+ (2l +2—p)P'+(A—=1—-1)P=0.

It turns out that the solutions of this differential equation that are finite
at p = 0 behave like e” at infinity, unless A = n is a positive integer and
n > [+ 1. In that case, there is a solution that is a polynomial of degree

n — [ — 1. It is called the generalized Laguerre polynomial and is denoted by

L2 (p). Tt is given by:

(TL + l)' dn+l n—l—-1_-—z
1= 1) dp¥ (")

The final result, with normalization, is:

1 |[(n=1-1)!

Ru(p) = Y me_ipﬂllzilﬁ (p)-

They are normalized such that:

/ Ry p*dp = 1.
Let us denote:
h2
@= 2mZe?’

We will write down the first few:

R10 = 261_3/26_5,
e ()
s = 1 e a
R20 \/ia % € 2,
1 r
R21 = _3/2C6_%. (6)

—a

26 a
They are normalized such that:

/ R%r?dr = 1.
One can also calculate:

[e 9]
(rky = /0 rET2R2 dr.

It turns out that:

Cy=gln—u+0) (=



(See Landau+Lifshitz for more details)
The energy in this case is independent of [ and is given by:
E, = —%264.
2h"n?
For Hydrogen (Z = 1) the lowest energy level is:

B, = —-13.6eV

68 The Atom

The energy levels of atoms with more than one electron cannot be solved
exactly. Let us first describe the Hamiltonian. We consider an atom with n
electrons and nuclear charge Z. (For neutral atoms Z = n but we will also

consider ions.) Neglecting relativistic effects the Hamiltonian is just:

_sz 2622 |+€22

z<] T

H=

T]|

The total angular momentum:

N LY

commutes with H. The energy levels can be characterized by the total an-

gular momentum, which we denote by L, such that:
L?|L) = B2L(L + 1)|L).

States with L = 0 are denoted by “S”. States with L = 1 are denoted by
“P”. And so on. The values L =0,1,2,...,10 are denoted by:

S,P,D,F,G,H,I, K,L,M,N.

If the electrons were not identical particles, we would get a degeneracy of
2" states for each energy level, because there are 2" values for the spins
states. However, we have seen for the case of two electrons, that the spin-
variables and position variables can be separated and the wave-functions can

be written as:

Y= ¢(771,F2)X(01,02)-
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If ¢ is symmetric then x has to be antisymmetric and vice versa. We also saw
that anti-symmetric x’s correspond to states with total spin S = 0 (there is
one such state) and symmetric x’s correspond to states with total spin S =1
(three such states). Thus, for n = 2 electrons, states with S = 0 have to
come with symmetric orbital wave-functions and states with S = 1 have to
come with anti-symmetric orbital wave-functions. Thus, the degeneracy of
2" states for non-identical particles is much smaller for identical particles.
In this special case of n = 2 we have seen that the degeneracy due to the
spin variables is only (2S5 + 1). This turns out to be true for any n, though
the details are more complicated. First, the total value of S can take integer
values from 0, 1,... % for even n and half-integer values %, %, ..., 5 for odd n.
The wave-functions of the form:

¢(F1, e aFn)X(Ola - -aan)

do not give all the states for n > 2. There are more states that cannot be
separated like that. However, it is still true that the value of the total spin
S, together with the requirement of identical fermions has some implications
on the behavior of the wave-function under interchange of 7; with ;. For

example, for n = 3 all the states with S = % satisty:
1/}(F17 FQ, F3a 01,02, 0-3) = _¢(f'2’ 7:’17 F3: 01,02, 03) =

and are completely antisymmetric in 7, 75, 7'5. There are 25+ 1 = 4 degener-
ate states. It turns out (without proof) that wave-functions with total S = §

can be chosen so as to satisfy

1/1(F1,F2,Fs,01,02,03) = —1/1(772,7_"1,773,01,02,03)
but, in general,

¢(F1,F2,F3,01,02,03) # —¢(F3,7?2,f'1,01,02,03)-

Instead, they can be chosen to satisfy (dropping the o; variables that do not
change):

V(71 75, 7o) + (T3, T, T1) = Y(71, T2, T3).
The point is that in general we can look for solutions to Schrédinger’s equa-

tion, supplemented with extra conditions that determine the behavior of the
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wave-functions under interchange of 75 with ;. This behavior is in gen-
eral more complicated that just being symmetric or antisymmetric. (It is a
mathematical theory known as Young Diagrams.) Because the electrons are
identical fermions, one finds that different values of the total spin S have
different behavior under interchange. Thus, the energy levels can also be
labeled by the total spin S. This is usually denoted by a superscript to the
left of the letter that denotes L. Thus, 2P denotes a state with L = 1 and
S = 1. P denotes a state with L = 1 and S = 1. There are (2L+1)(2S+1)
states in the multiplet.

69 The Shell model

This model explains the basic properties of the periodic table. One of the
most important properties of atoms is the ionization energy, that is, the
energy that is required in order to release one electron. It is given by the
difference in energies of the ground state of an atom with nucleus of charge
Z and n = Z electrons and the energy of the ground state of an atom with
nucleus of charge Z and n = Z — 1 electrons. The ionization energy is the
highest for He (approximately 25eV). In general it is very large for the inert
gases:
He,Ne, A, Kr, Xe

and is small for the Alkali metals:
Li,Na, K,Rb,Cs,...

The pattern of filling of shells is as follows (see Landau+Lifshitz):

1s 2  electrons
2s, 2p 8 electrons
3s, 3p 8 electrons
4s, 3d, 4p 18 electrons
bs, 4d, 5p 18 electrons
6s, 4f, 5d, 6p 32 electrons
7s, 6d, 5f electrons

The heuristic explanation for why 4s gets filled before 3d is that in higher d

states (r) is smaller. Thus the electrons in higher d states penetrate closer
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into the previously filled shells and the repulsion with those electrons in the
filled shell is stronger.

Suppose we are given the electron configuration (i.e. we know how many
electrons are in each shell). How do we determine L and S? The electrons
in a complete shell add up to a total angular momentum and a total spin
of zero. However, The electrons in an incomplete shell can still add up to a
nonzero value of S and L. For example, in a configuration 1522522p? the two
electrons in 2p? can have values of m ranging from —1,0,1 and spin values
ranging from —1, +1. If both spins are aligned in the same direction we have
a total of S = 1. The orbital wave-function should be antisymmetric. The

symmetric combinations are:

1 1 1

ﬁ(llo) — |01)), ﬁﬂl, —-1)—|-1,1)), ﬁ(lo, —1) —|-1,0)).

All these states have L = 1. If the total spin is S = 0 we have three symmetric

combinations of m as follows:

1 1 1
E >)a E(Ha _1>+|_1’ 1))? ‘00>’ E(‘Oa _1>+|_1’ 0>), |_1a _1>'

It turns out that 5 linear combinations of these states have L = 2 and one

|11), —(|10)+|01

linear combination has L = 0. So we have the possibilities 1S and 'D. So

we have the three possibilities:
1Ss.1D,3P.

Which one has the lowest energy?
Hund’s Rule: Among allowed states with the same configuration, the
state with largest possible value of S and the state with the maximal value

of L, for this given S, has lowest energy. In our case, this is 3P.

70 Relativistic effects

e Spin-orbit interaction:

~ lel = . =  Ze?
V=T —-S9x&E=
c p m2c2rs

—

L-S
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e Correction to the kinetic energy:

2
_mc ) 1 Q_L 4
E—iv2 =mc +2mv 202mv +

CZ
e Spin-Spin interactions.

When is it necessary to include relativistic effects? Let us first estimate
the velocity of the electron in the ground state of the hydrogen-like atom.
2 N Z€2> A
m r’ R
The ratio of v/c can therefor be estimated:
2
v e
-~ Z—.
c he
The quantity ,‘;’L—i is called the find structure constant. It has the approximate
value of 1/137. We see that for Z = 1 the relativistic corrections are small.
However, the electrons in inner shells of, say, Uranium (Z = 92) move at
speeds comparable to the speed of light and the relativistic theory (Dirac’s
equation) should be used for them.

There is another reason why we should include relativistic effects even
if they are small. Relativistic effects can cause degenerate energy levels to
split. For example, the n** level of the hydrogen atom has a degeneracy of
2n? because | = 0...n — 1 and there are two values for the spin. The spin
orbit interaction can, in principle, split it into 2n levels. The extra correction

to the energy will be:

Zer
S L ).
Here: )
(L-8) = ((L+8)"— 1 -5

The operator J=L+8is conserved, unlike L and S separately. The
operators J2 and L? (and of course 52) are also conserved. The values for
J? turn out to be j(j +1) with j =1+ :. Thus:

3 1

(L-8) = 3(G+1) =1 +1) = ) =+1
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This means that F could in principle depend on n,l and j. In practice,
the correction from this term adds up with the other relativistic correction
—ﬁmv‘1 and the energy levels of hydrogen depend on j but still do not
depend on [. Since j can take values from % up to (n — 1) + % =n— %, the

n'* level of hydrogen is split into n levels with distinict energies.

Physics 505
Week 13, Dec 14, 1999

Ori Ganor

The Quasi-Classical Approximation

See Landau-+Lifshitz for a good reference.

71 Equations of motion on average

Let us discuss the 1D time independent Hamiltonian:

1
H=— 32+ U(%).
5P T ()

We have seen that the classical Newton’s equation is satisfied on average
(Ehrenfest’s laws):

(@ = () =+ {H,B]) = ~(U'(8)) = (F(@)).

Why doesn’t that imply that the average of the position, (%), has

a classical trajectory? Because we have to remember that:

(F(2)) # F((2)).

72 The classical limit

In this class, we would like to study under what conditions the classical
approximation is valid. We would also like to describe more concretely the
relation between the wave-function and the classical trajectory in the classical

limit.
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The starting point is to note that the classical approximation, roughly
speaking, is correct when the deBroglie wave-length is small. In this case,
the phase of the wave-function fluctuates quickly.

We wish to perform an expansion in . The constant A is dimensionful,
so what we mean by an expansion in 7 is really that A will multiply functions
like ﬁ with the opposite dimensions as & and these functions will be small.

The strategy is to look for a solution:
V=€t p=do+ho +hh+ -

Putting this in Schrédinger’s equation we find the 0" order equation:

%%2 LU= B ylz) = :I:/\/Qm(E — U(z))da.

We will denote the classical momentum at point x by:

p(x) = \/Qm(E - Ul(x)).

Then, .
dolw) == [ p(y)dy.

Let us continue with the eapproximation. The next order is:

1 1
—%(ﬁg + E%qﬁ = 0.

Therefor,
6 =i = g1 = L1og |
= 71— = — .
1 % 1=3 gD

So at this order we find the real solutions:

Co . [1 f=

¥ = —L sin ﬁ/ p(y)dy+0] i
p|

The meaning of this approximation is as follows. The quantity £ is, locally,
the wave-number £ = 27”, associalted with the deBroglie wavelength. The

integral % ¥ p(y)dy is the generalization of kx when p varies. The factor of
Ip| also has a nice interpretation. It makes |1)|*> proportional to ﬁ. This
means that the probability to find the particle between x and z + dz is

inversely proportional to the velocity. This is what we expect classically.
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To check when the approximation is valid, we have to require:

60| > Al

(We put the derivative since ¢y and ¢; themselves have undetermined inte-

gration constants.) We find:

/ d
ol 2l |9
| dx

Here ) is the deBroglie wavelength calculated from p(z) (which, in turn, is
calculated from U(x)).

73 The WKB approximation

What about the regions of z for which £ < U? These are the regions were
classically, the particle can never be. Nevertheless, we can try to do the same

procedure in those regions as well. In these regions p(x) is imaginary. We

p(x) = ia(z), a(z) =1/2m(U — E).

The approximation is valid as long as: h|o/(z)| < a(z)?. The wavefunction

can write:

decays exponentially as:
G, [T oy

Ja

This is called the WKB approxiamtion.

74 The turning point

Suppose we have a potential U such that U < E for x < 0 and U > E
for x > 0. Classically, x = 0 is a turning point. That is a point where the
particle will turn back. Can we use the same formula for the wave-function
on both sides of the turning point?

We can calculate the condition for validity explicitly in terms of U:

dp d mdU mF
pt @\/Qm(E -U)=———F=—.

pdz p
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So, in terms of the force, the quasi-classical approximation is valid if (see
Landau+Lifshitz):

mhF
—| < 1.
p
We see that the approximation always fails at the turning point where p = 0.
What can we do? suppose the approximation holds for z that is negative

enough and also for x that is positive engouh. We can then write:

(o) jrﬂsin [—% 12 p(y)dy + 9] forx <0
T) &

%6_ Jo aw)dy forz >0

Can we find the relation between Cy and C;? Can we find 07 For this
purpose, we obviously need to analyze the region near x ~ (. Let us assume

that near that region the force F' is constant.

75 Constant force

Let us take U = —Fx. The exact solution is given in terms of the Airy
function as:

omF\ /3 E
) G

U@ =40, €=(T5) @+ 7).

It is given by:
1 e 1,
o) = NG /_oo cos(ué + U )du.

We can also define it as:
100
eué—3v’

1
- 2\/7_1' —100

We can make the integrand divergent by deforming slightly to give v a small

o(¢)

negative real part.
This wave-function is not normalizable. We can check by integration by

parts that:
2"(£) = £2(¢).
1 then satisfies Schrodinger’s equation. It can be checked from the saddle

approximation that the asympotic behavior of ® is (see Landau+Lifshitz,
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appendix (b)):

3
&~ 25_26_552 i for £ = —o0
e sin(2[¢|2 + ¢m) for £ — o0
Let us set £ = 0 and substitute in ¢ (z). This means that the wave-function
behaves as:
_1
v % thng 12 x_iexp {2\/2mFa:3} for r — —o0
~ 21 for 13
(2 F) 2 || sin(ﬂ + im) for z — oo

A2
Comparing to the classical approximation we find:

p(z) = vV2mFzx, / \/2mF|x|3

Comparing with the classical two limiting cases of the classical approximation

we can state the summary.

76 Summary

If the turning point is at £ = 0 then the approximate expressions for the

wave-function, away from the turning point, are:

(o) \/|_sm[ f p( )dy+i7r] forz <0
T) &

me —Js o forz >0

77 Bohr’s quantization rule

Suppose there are two turning points a and b. Let us take p to be the positive
root of \/2m(E — U). The wave function would behave, on the one hand, as:

c .
%sm h/ dy+ 7r_.

On the other hand, it would behave as:

Cl
%sm h/ dy——7r .

In order for both expressions to be consistent we need:

1 — nel
h/ dx—n+§)7r, C=(-1)"C".

This is Bohr’s quantization condtion. This is an implicit equation for E.
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78 Example: Harmonic oscillator

For a harmonic oscillator we find:

=V2mE — mkx2.

/a :L'—QE\/7/ mdx——w.

Bohr’s quantization condition implies:

E 1

As we know, this is also true exactly!

79 Quasi-Classical scattering

80 Hamilton Jacobi eqaution
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