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Various Topics

12.1 Noninteracting identical fermions - Slater’s de-
terminant

Suppose we have a system of n identical particles. Assume that they are
not interacting with each other so the Hamiltonian is a sum of n identical
single-particle Hamiltonians H = > H; where each H; involves only the
variables of the i particle. For bosons, we symmetrize as follows: Let us

assume that the eigenfunctions of H; are:

7/}1(1'1'), 1/12(331'), ..

Now we can write the wave function of the system of identical particles.
Let us assume that we want to have n; particles in the 1% state, n, particles
in the 2"¢ state, and so on. We have n; + ngy + -+ = n. So we write the

wavefunction:

U (21, Ty oy Ty) = A1 (1) - - - Y1 (Tny ) V2(Tny41) - - - Y2 Tny4m, ) - - -+ (all permutations)

Here A is a normalization constant. We can write this more formally as:

n1,n9,..) — A TTII ¢j($a(l+2fc:1 nk))’

o j i=1

where A is the normalization factor. For fermions we insert an extra (—)”

and use the fact that n; =0, 1:

n1,ng,...) — BZ(_)U H 1/)j($0(1+ 1;11”’6))

nj=1



B is another normalization factor. This can also be written as a (Slater)

determinant:
Vi (1) V(1) -0 Py, (21)
Vi (12) Vg (x2) -+ 2y, (22)
1/’3‘1 (xn) 1/{7'2 (xn) T /¢7jn (mn)
Here ji,..., jn are the subindices, j, for which n; = 1.

Let us calculate the normalization factors. Let us denote:
n;
Yo = l}lzﬂl Uit

We have to calculate:

Z/\Ilz\llgzdxl - dx,.

o,0’
The integral is nonzero only if every z; appears in the same function 1 for

both o and ¢'. For a given o, there are [, n;! such ¢’. So, altogether:
g k

1
vV n! Hk nk! ’

It is also easy to see that B = 1/v/nl.

12.2 Exchange interaction

The phenomenon of ferromagnetism and diamagnetism is often explained by
an effective interaction between ions with spin. Let us take two ions, one at
the origin and one at R. Let us assume that they are identical fermions with
spin—%. We assume that they are pinned to their places by a strong potential
so that R does not change. The effective interaction between them is often

written as:

V=-JS -5,
where S; and S, are the spin operators of the two ions. Where is this inter-
action coming from?

First there is the magnetic interaction between the two ions. Each ion

has a magnetic dipole moment:




where ¢ is a numerical factor that depends on the ion. Two dipole moments
interact and have a potential energy:
3(M, - R)(My - R) — (M, - My)R?
R5 '
This, however, is not the only source! Another source is the exchange

interaction. Recall that the wave-function of two spin-% particles can be
written as (71, 72)x(s1, s2) where s; and sy are the spin variables. If the
wave-function of the spin variables,x(s1, s2), is such that the total spin Sr =
S, + S, has value 1 (more precisely S2 has eigenvalue A1 - (1 + 1) = 2h?)
then (7, 7y) = —(7s, 71). If x(s1, s2) is such that Sr =0 then Y(M, ) =
(7, T1).-

Now consider the system of the two ions. To a good approximation, the

Hamiltonian does not contain the spin variables. We may assume that it is

given by:
) —
A Y4 D1 - o
=2 .
oM o T V()

The eigenstates of the Schrodinger equation associated with this Hamiltonian
fall into two types. Those that satisfy (7, 72) = 1(7,71) and those that
satisfy (7, 7) = — (7, 71). Let us denote the solution with lowest energy
and with a wave-function of the first type by ¢, and let us denote the solution
with lowest energy and wave-function of the second type by ¥ _. Let us denote
the corresponding energies by £, and E_. In general, in this case £, < E_.
The reason is that the ground state energy cannot have any zeroes but all
the states of the second type (antisymmetric) have zeroes when 7} = 7. So
the ground state much be v, .

If the ions are far apart, £y and E_ will be close in energy and 1, xo and
1_x1 will be the lowest energy states of the spectrum of the two-ion system.
Now, if we the energy scale of a given problem is such that the system is
never excited to states beyond the two states ¥, xo and ¥_x; we can write
the energy of the system in terms of the spin variables as:
5t
o7
The point is that this expression works for both states. Now we can write:

E=FE,+(E--Ey)

$o= B+8) =5+ 84255 =0 +25 -5,
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Here we used the fact that for a single spin-% particle 52 always has the

eigenvalue (3 + 1)1 = 3%, So we can write the energy as:

3 E —Ey~ - 1 3 E —E,~ =
E:E++Z(E_—E+)+?+Sl-52:ZE++ZE_+T+51-S2.

Up to an unimportant constant, this is the exchange interaction.

12.3 Addition of angular momentum

Consider two systems. One with total angular momentum L; with eigenvalue
h21y(l; +1) and the second with total angular momentum L, and eigenvalue
h*l5(ly + 1). The first system has a multiplet of (2{; + 1) states |m,) with
ﬁlz eigenvalue hm; with m; = —ly,...,l;. The second system similarly has
(2ly + 1) states. Now let us think about the combined wave-function of teh
two-systems together. There are (203 + 1)(2ly + 1) states that we label as

|mims). We also have the total angular momentum operator:
I_: = El + EQ.

The question is, can we find linear combinations of the (21, +1)(2l; +1) that
are eigenstates of L2 and L,?

The answer turns out to be that the possible eigenvalues of L2 are i2[(I41)
where the possible values of [ are all the integers that satisfy [l — 5| <1 <
Iy +15, in case [, 415 is an integer. If 1 + 15 is % plus an integer, that [ also can
takeany value that is an integer plus %, again in the range |l; —ls| <1 <l +1s.
With (21 + 1) states for each [, the total number of states is:

i+l
> o (20+1) = (2 +1)(2 + 1).
I=[l1—l]

To find these linear combination, we can write a (21; +1)(2lo+1) x (21, +
1)(2ly 4+ 1) matrix corresponding to the operator I? in the basis |myms) and
diagonalize it. This is, however, very complicated and there is a much simpler
way.

Let us consider first the value [ = [;+1,. Let us also denote the eigenvalue
of L, by im. A state |mims) is an eigenstate of L, with m = my + m.

Let us look for the state |[,m); (we will add a subscript 7" when we are
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discussing eigenvalues of the total L, to avoid confusion with |m;ms)) with
m =1 = l; + l5. This is the maximal possible value of m and there is only
one such state in the subspace of (21; + 1)(2ly + 1) states. It is |l;l3). So we
conclude that:

i+ by b+ o) = |1, 1)

Now we can apply L_ to find:

L_ Li_ + Ly
[l +loy by + 1o — 1>T = —————|li+ b, l1 + 1) - 2

/200 + 1) T 20 + b)

ll 52
= LW —1,1 l1,lo — 1).
ll+l2|1 2>+\/ll+12|1 2= 1)

In this way,by repeated application of L_, we can find all the states with
I=1+15.

What about the states with [ = [; +15 — 17 Let us look for the state with
maximal value of m = [; + I3 — 1. There are two linearly independent states
with this value of m. One is |l; — 1,13) and the other is |l;,l, — 1). The state

that we are looking for, |l; + 1y — 1,11 + [y — 1), is a linear combination of

|l1752>

them. But we also know that it is orthogonal to the state

ll 12
L+l li+1—1 zﬂil—l,l Hil,l—l,
i+l 1+ 1y >T ll+l2|1 9) + ll+l2|12 )

since they have different eigenvalues of the Hermitian operator EQT So our

normalized state is:

l2 ll
htly— 10+l — 1), =4 = 1,0) — | ——|l, Iy — 1),
‘1 2 1 2 )T l1+l2|1 2> 11+l2|1 2 )

We can now find the rest of the states with [ = [ + 1, — 1 and different
m’s, by repeated application of L_ as before. Next, we look for the state
|l1 + 1y — 2,11 + Iy — 2). There are three independent states with m = Iy +

lo — 2. They are:
lli,le —2), |l = 1,10 = 1), |lh = 2,15).

But in the previous steps we have already found two states with total m =
l1 + Iy — 2. They are:

b+l b+l —2)p, |h+l—1,L+1—2),.
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The state |l; + 1y — 2,11 + I3 — 2) must be the linear combination:
Ally,le —2) + Bll; — 1,1 — 1) + Clly — 2,15).

that is orthogonal to both [ly +lo,l1 + 1o — 2), and |l + 1o — 1,11 + 13 — 2) .
In this way we proceed until there are no more states to find. This happens
when we reach | = |l; — l3| — 1. In this case there all the states with m = [
have already been accounted for in previous stages. So there are no more

new states.

12.4 A continuum with multi-variables

Recall the Golden Rule for the rate of transitions to the continuum. If the

continuum is labeled by a parameter k£ such that:
(K'|k) = o(K' — k),

then: P 9
=20 [ 1RV PO (Ey (k) — Ei = hw)dk.

It sometimes happens that the continuum is labeled by more than one pa-
rameter. For example, a bound state of two particles that is also bound by
a potential can dissociate and the final state will be labeled by two particles
in the continuum. In this case we can label the continuum by |k1, k2). We

need to normalize:
(K, ksl k1, ko) = 6(ky — k1) o (ks — ko),
and then:
% = 2% [ Kk, ko [ VIS (B (1, bz) = Es = o)k
Note that this time there are many different final states, since the equation:

Ef(k'l, I{IQ) — Ez — hw = 0,

has more than one solution.



12.5 Density of states

There is an alternative way of deriving the normalization of the continuum
states in the golden-rule. Let us assume that & is the wave-number of a free
particle. For the normalization (k'|k) = 6(k' — k) we took the wave-function
1 .
1) = (z|k) = —e'*2.
Ur(2) = (2lk) = -
Let us now pretend that x is restricted to a finite length. We will denote the
length by L. We can take the boundary conditions x(—%) = ¢, (%) = 0,
but it is more convenient to take periodic boundary conditions:

Ur(z) =te(@+ L),  Yi(z) = ¢z + L)

Now k takes on discrete values:

2 Aw
k=0,—,—,...
) L ) L )
The wave-functions are now:

1
Yr(z) = ﬁe

ik

They are normalized such that:
<kl|k> == 5k’k-

In the limit L — oo, the number of states between k and k + dk, is:
L

%dk.

In the new normalization: (k|V|i) is smaller by a factor of \/L/2r. But in

this normalization we can write:

s VI 8(E,(R) — B~ hw) — [ k171 P8(By (k) ~ Es — hw) -

and the result is the same. The second arrow is in the limit L — oo.
In 3D, we can take a finite volume. The normalized wavefunctions are

then:
L ks
\/V
and the number of states in a E—space volume element d3k is:
V
(2m)3
The factor, V/(27)? is called the density of states.
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