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Background

e Witten discovered remarkable properties of per-
turbative scattering amplitudes in N = 4 SYM
in D=4,

e Switching from a basis of plane-waves to a
basis of shock-waves (twistors), Witten found
that amplitudes vanish unless certain algebraic
conditions (on the incoming and outgoing twistors)
hold.

e Witten proposed that a topological B-model
with target space CP3l4 (super twistor space)
reproduces the SYM amplitudes. Certain non-
perturbative effects (D1-instantons) are a cru-
cial ingredient.



Further developments

Several further developments:

e Berkovits proposed an alternative (perhaps dual)
string theory where worldsheet instantons rather
than D1l-instantons calculate the amplitudes.

e Aganagic & Vafa found the mirror of the B-
model on CP3l4.

e \Witten and Berkovits & Motl explained how
parity symmetry is restored.

e Bars and Sinkovics & Verlinde derived twistor
space from higher-dimensions.



Further developments . ..

e Cachazo & Svrcek & Witten developed a tech-
nique for calculating general amplitudes from
MHYV building blocks.

e Several groups calculated loop amplitudes. [Bern
& Dixon & Kosower, Cachazo & Svrcek & Witten,
Britto & Cachazo & Feng, ...]

e Berkovits & Witten showed that in twistor string
theory conformal supergravity is coupled to
SYM.

e Kulaxizi & Zoubos found marginal deforma-
tions of N =4 SYM in twistor string theory.

e Several groups studied orbifolds of twistor string
theory. [Park & Rey, Giombi & Kulaxizi & Ricci &
Robles-Llana & Trancanelli & Zoubos]



Motivation

We would like to add mass terms:

1 1
9L = tr{ PP + =30 Dy Dro]
I

Yol 0712 + Y wlot Pom

I1,J A

+ 3 (FhpelpdeBe + 1T 4Baly 4 pf)
AB,I

+ 3 MapwiypBe 4+ 3 MABy 450
A.B AB

+ (mz)IJCDICDJ},

1
4

symbol | spacetime | SU(4)gr
bl scalars 6
A (L-)spinors 4
Yas | (R-)spinors 4
MAB - 10
Myp - 10

We are then going to dimensionally reduce to D =
3 and test the proposal for mass terms. (And we
have some puzzles ...)



Notation

e Shock-waves on R%2 (or C*):

(@t 1) o 82 (20" + 115)

a=1,2, a=12, =z, =71"0,4s

e t = (i, )\) denotes a D = 4 twistor.

e Twistor space is CP3\ CP! with projective co-
ordinates

7l =21 722 =22 73 =1 74 = /2
(z1,22,73,2%) ~ (¢czt,¢2%,023,¢2%),
(z1,7%) # (0,0).



Picture of twistor space

CP3 \ CP1

Twistor space is a fibration of C2 over CP1.

Two patches:
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Supertwistor space

For N =4 SYM, Witten added four anticommut-
ing coordinates Wl ... w4
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Super-twistor space is a fibration of C214 over CP!.

Two patches:
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Chiral Fermion Mass Term

Claim #1:

Adding a chiral mass term:
5L=Y MAPyp a0
A,B
IS equivalent to a certain super-complex structure
deformation of supertwistor space CP34\ CPI4.

Note: The chiral mass term breaks CPT, but all
we are doing here is summing Feynman diagrams.
We don't care about unitarity ...



The &3 Supercomplex Structure Deformation
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Infinitesimal chiral mass term

Before we prove the claim, note that an infinitesi-
mal chiral mass term would correspond to the in-
finitesimal vector field

1
50 =~ _sMABepopproCoPol
672
— 1 AB 1C ~1D ~F
This vector field corresponds to a B-model closed
string state, and is associated with a mode of

the spacetime conformal supergravity field EAB.
[Berkovits & Witten]

It can be checked that this particular mode is
Poincaré invariant [in sheaf cohomology], and has con-
formal dimension A = 1.

11



Mass term as a VEV of a CSUGRA field

We therefore interpret the infinitesimal mass term
as a VEV:

oMAB = (E'P)

Similarly the anti-chiral mass term can be inter-
preted as a VEV:

dMap = (E4B)

The couplings § M 4By 449% and §M 4 ppiypBe can
be compared to formulas of Berkovits & Witten.

But we can also verify the claim for the relation
between a mass term and the supercomplex struc-
ture deformation directly . ..
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Wave-functions with the mass term

In momentum space, the free Dirac equation with
a chiral mass term is

A AB )
paa¢a =M wo'zBa Padiﬁ?{ = 0.

Like the massless case (MAB = 0),

o

p° =0 = DPaa = Aada
For the massless case, the general solution is:
VoA = Aa04(X, N), i = Ao (N, ).

For the massive case, the general solution is:

VoA = Aa04; i = Ao + M P45,
where n, is some spinor that satisfies

na)\a = 1.

(Note that no is not globally defined!)
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The twistor transform of the Dirac Wave-functions

As in the massless case, we get the twistor trans-
form by a Fourier transform:

(= [ Xt N),

oA 1= [ XG40, ).
(Following similar steps as in the appendix of Wit-
ten's paper ...) We take the twistor transforms,
plug them into the previous expressions, and inte-

grate over XA and )\ to convert from momentum-
space back to coordinate-space.

We perform the X\ integral by gauge-fixing

()‘17>‘2) = (17Z)7 (7717772) = (170)
Recall that noA* =1

We then convert the A\2-integral to a z-integral
over a path C around the origin.
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Contour integrals

We get
004
r) = — dz—=—
wA( ) = 2mi JC Opglat (A%, zea )
vi(e) = o d=[na0t + M Py
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How do we see that this corresponds to

the supercomplex structure deformation

o' = —@A + — MABepoppoCoPof|?

6Z2
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Contour integrals . ..

The contour integrals only depend on the residues
of the simple poles inside C.

iy 1 N
¢i(:c) — 2—me dz01504(1, z, T1i+ Toi2,T15 + 3]222)

(where Al =1 and A2 =2)

will not change if we add to g4 a function that is
holomorphic at z = A2/Al = 0.

We can also write the integral as
r) = 02 — 1, —= 425, —= 4 -
wA() i SO 22 QaQA(Z . + 217 + 22)

(where we replaced 014 — 024/2.)

This integral doesn’'t change if we add to EA a
function with at most a simple pole at z = A\2/\! =
oo (and an arbitrary singularity at z = 0.)

So far, this is just like the massless case [Witten].

What about ¢4 (z)?
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Superfields

The fermion (twistor) fields EA and g4 are mem-
bers of a superfield [witten]:

AX,Y,Z,©) =
040"+ 4 éeABopéA@B@CeD +-
The contour integrals should be invariant under
A — A+ (holomorphic at Z # 0)

+ (holomorphic at Z # o)

[In other words, A is an element of sheaf coho-
mology HI(.--).]

Invariance of the contour integral with the mass
term,

A~

1 ~
Va(e) = 5§ dzhag + M Fnagp]
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as the “good” coordinate near Z = oo.
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Holomorphic Curves of Degree d =1
In the undeformed twistor space A holomorphic

curve of degree d = 1 in CP3l4 is given by a set of
linear equations [Witten]

X = =Ty —2piZ, Y =—x15 = 2957,

04 =0 — 057,

where z,,; and 64 are moduli.

With the chiral mass term, the last equation has
to be replaced with the quadratic expression

04 = —04 — 047 + MABegopptS 6565 72

(In order to have *“good” behavior near Z = ~o.)

This can be compared with amplitudes . ..
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Dimensional Reduction

Can we learn more about mass terms by dimen-
sionally reducing to D = 37
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Dimensional Reduction to D =3

We dimensionally reduce to D = 3 by gauging the
translation generator Pjy.

Gauging would make P, = 0 identically. In an
appropriate basis, P, acts as

SN = 0, Su® = e,

(Note that in D = 3 there is no distinction between
a and a.)

CP3 \ CP! TCP!
C2 C

P o T = SR

After gauging P, we are left with minitwistor space
TCPL. [Hitchin]
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Minitwistor space

Minitwistor space is TCP! [Hitchin]. It can be pa-
rameterized by the P,-invariant

)\1 i)\2_ 241
pu— A w == IU/ 'U/ >\

22 (A2)2
For signature R1:2 the minitwistor space is TCP1
and z,w are real.

z

The corresponding shock-waves are

&(z0, x1 2%) = §(w+ [2° — 2°] — 2212 — [22 + 20]29)
Super-minitwistor space can be covered by two
patches with transition relations:

1 1 1
2 == w = Zw, 9’A = ~p4.
z z z
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Geometrical interpretation

Minitwistor space has a simple geometrical inter-
pretation {that I learned from P. Baird’'s review}:

TCPL is the space of oriented lines in R3.
R3 .
n

e —
A
O

n? —in3 1
z = T+l € CP* ~CU {oc}
—(14+n)(AZ2 —iA3)+(n?2 —in3)Al
w =

(14 nt)?

(By stereographic projection.)
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Helicity in D = 3
The Lagrangian of this D =3 SYM s

1
g3L = tr<4F F 4 = Z Do Di! — Z [, d7?
z—l I J

+ Z x&o'oP iXG+ D Gaﬁrlbq’IXan)
a,b,1

Onshell, instead of the gauge field we get two
scalars:

A4 p— ¢7, sz - Gijlal¢8
Helicity + refers to onshell states with

= 455,
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Holomorphic curves

At tree-level, Witten's discoveries about D = 4
SYM amplitudes and holomorphic curves in twistor
space immediately imply similar results for D = 3.

For example, MHV amplitudes correspond to quadratic
sections of TCP!:

w = —[:132 — :L'O] 4+ 2zl + [:c2 - CCO]ZQ.

For D = 3, there is a correspondence [Hitchin]:

holomorphic curves Real minimal area
in minitwistor space | <— surfaces
TCPL in physical space R3

For signature R1:2, this correspondence translates
to an amusing physical interpretation for the holo-
morphic curves.
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Algebraic curves in TRP! and filaments in R1:?2

0=> 2w’ Expand near (wq, zg9) =

r,s

w = wg + a1(z — 20) + ax(z — 20)° + O(z — 20)>

We approximate the bt

algebraic curve locally w = f(2)
by parabolas. Each 2
parabola corresponds to z il

an MHV curve. .

Each parabola therefore corresponds to a point #
(#,2",...) in physical space R}2. The collection

of the points &, &, Z",... forms a filament F.

The filament is a null worldline in RL:21

T« 7 . |R2!  The outgoing waves of the
\\\ /// scattering process can now
\\\ /// be described as a physical

NS disturbance that is emanat-

ing from the filament F.
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Twisted Dimensional Reduction

We can get D = 3 mass terms by gauging a
linear combination of translation and SU(4) R-
symmetry:

Py — MAgR4B = 0.

R 48 is the R-symmetry charge. E.g.,
[RAP,4C] = 6GvP.

For example, Dirac’s equation becomes

4 3
0= rHoup® =3 réomp® + M gys.

There is also a mass term for the scalars
0 = 8 ¢[AB] + MAC MB, QS[CD]’

Repeating the steps as before, we get instead of
minitwistor superspace . ..
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D = 3 Massive Super-mini-twistor space

Repeating the steps as before, we get the super-

mini-twistor target space for the massive D = 3
SYM in the form

1 %% 1 %%
Z' ==, W' =—, @’:—exp<—M>@
Z Z Z Z
L Ee <
col4
} ©
C w
The four anticommuting
X ©4 directions are fibered
Cpl in a nontrivial way over
the W-plane.

How is this related to direct dimensional reduction
of the mass term deformation

A 1 1

that we found previously?
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D = 3 Infinitesimal Mass Terms

For infinitesimal mass terms in D = 3 we get the
following complex structure deformations

: A %%
SMA got %P = ' = s 4 B?eB,
- 1
SMAP G, = 504 = 5MAB6ZQEBCDE@C@D@E

The vector fields on the RHS are the only trans-
lationally invariant (in cohomology) §®@’ deforma-
tions (unless we allow anticommuting parameters).

The translation generators act as

P1=’1;Zi,

oW 5
P :=Py+4iP3 = —i———
+ >+ 1P3 %ama/,

P =P5 —iPs = iZ%°—_.
2 3 W

R-symmetry [Spin(7) in D = 3] should transform
one mass term to the other. How does Spin(7)
act?
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Spin(7) R-symmetry

The R-symmetry group of this D = 3 SYM s
Spin(7). The fields decompose as

A A 544 4=28, SlABl 47 641 ="1.

The adjoint representation of Spin(7) decomposes
under the D = 4 R-symmetry SU(4) as

_ : A AB
21 =15+ 6, generators: T g, T6
15

The commutation relations are
T4, T pl = 65T 5 — 65T p,
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Action on the mass operators

We have three mass operators, two of which are
vector fields in the B-model:

- W 3,
B.__ 4 B B
Vali=ogaiyt = —eb_—,
- 1 8
Vap=¢%ps == — etelelf
AB =Y AYB4 67 BCDE Y,

VAB:ZwAa%l? —= (nonperturbative)

These operators form a Spin(7) irrep that decom-
poses under the D = 4 R-symmetry group SU(4)
as

35=15+4+10+4 10.
The nontrivial R-symmetry generators act as:

[T45,vepl = 66VP p — 66V p + 6pVP 0 — sV ¢,
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Problem

If we could find the action of TAB in twistor string
theory, we would learn how to turn on a non-
infinitesimal mass term in D = 4. (Since we know
how to “integrate” VA, in D =3.)

[But I only have a very partial answer to this prob-
lem.]
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Berkovits's model

It might be easier to identify R-symmetry
in Berkovits's model.
(cf. parity symmetry [Wwitten, Berkovits & Motl].)

3 . 4
S = / d*; [Zl Y;V5Z' + Azl T AV WA
1= =

+ (right—movers)] + Sc,

Vizt =02 — Az77, ViZ? = 8;2° — A37°,
ViZ® =827 — 2A;7°, VWA = gwd — Awd
Gauge invariant fields:
Zl Z3 wA
Z = W= " o4 =

72’ (Z2)2 g2
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R-symmetry currents in Berkovits's model

Translation currents:
Py =-Y3(Z2Y)?, P1=Y32'Z% P_=Y3(Z%)?
SUSY currents:

Oy = Z1T 4, o = —ivzzle4
A

Ou_ = Z%Ty, 0 =iv37204.
SU(4) part of the R-symmetry currents:

1
TAp = T4 - ZagTC@C.

Our proposal for the remaining 6
R-symmetry currents:

TAB = 30408 + Ly; 1ABCDYy v,

Note:
The inverse Y3_1 can be handled by bosonization.
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Comments on bosonization

Note that there are two ways to bosonize a a su-
perconformal g+ ghost system.

Either (i) B =e ?TXgy, ~=¢e?7X
=y li=e7?tX, §(y)i=e™? no B~ and 5(8).

[Formulas copied from Polchinski II.]

So, we can have Y3_1 and 6(Y3).
[The latter is needed for Berkovits & Motl's in-
stanton number changing operator.]

v/ But we cannot have both Zz ! and §(Y3).

X And we cannot have both Zl_1 and 6(Y7).
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Mass operators in Berkovits's model

A naive application of [Berkovits & Witten]'s rules
give

VAB.= (7122~ 1wawB)  (from E4p)
VARi=(2122) 71 23 (rpwA — 158w,
Vap=(Z2'22)Yecpp T4y WEWPWE  (from EP)
But these do not have the proper commutation

relations with the R-symmetry charges TAB.
(Calculated from the OPEs with J4B))

Instead, we found that the following operators are
in a Spin(7) mutliplet:
Vap = (Z21Z22)7 1527 40T py,
Vvig=3(2'2%)"(v5 torpwd
— Y5 ' powd + oy T pwd)
- §(z' 2?7 Yef(v5 torow©
= V5 P eaw 4 avg T ew).
(Normal ordered.)
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Puzzle

Why is the first set of operators not in a Spin(7)-
multiplet?

I don't have a good answer, but note that J4PB
changes the helicity of the states and hence, in
[?]’s language, the “instanton-number.”
For example, 74B changes ¢’ to ¢l4Bl and so

¢® = +ip’ = 5¢1B.

(We get helicity 0 states from helicity +1 states.)
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Summary

e In D = 3 we found that

corresponds to a mass term.

e In D =4 we found that

A 1 1
T =_ot+ M Wepoppeere”

corresponds to a chiral mass term.

©

e In Berkovits's model in D = 3 we proposed
that

are the missing Spin(7) R-symmetry currents.
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Open issues

D = 3 at 1-loop~?

The Iimit M = o7

The Spin(7) R-symmetry ...

Mirror symmetry . ..
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Feynman diagrams with a chiral mass term

P Me . ;
%ﬁ —ap 0

o« P B & PP« B

The fermion propagator in the presence of a chiral
mass term.

~

| Ao @ | 0 _ Mnao _ A& 0

« « « «

The fermion external wavefunction in the presence
of a chiral mass term. Here we decomposed the
momentum as p,; = Aa)g and nq satisfies e A =
1.



Feynman diagrams with a chiral mass term

+ o +

+ + +

Planar Feynman diagrams that contribute to the

scattering amplitude of helicity (4+++4-) with a
chiral mass term. Wavy lines are gluons and solid
lines are fermions, and we use the convention that

all external legs are incoming.
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