In her recent work, Mina Aganagic proposed novel perspectives on computing knot homologies associated with any simple Lie algebra. One of her proposals relies on counting intersection points between Lagrangians in Landau-Ginsburg models on symmetric powers of Riemann surfaces. In my talk, I am going to present a concrete algebraic algorithm for finding such intersection points, turning the proposal into an actual calculational tool. I am going to illustrate the construction on the example of the sl_2 invariant for the Hopf link. I am also going to comment on the extension of the story to homological invariants associated to gl(m|n) super Lie algebras, solving this long-standing problem. The talk is based on our work in progress with Mina Aganagic and Elise LePage.