ABSTRACT: Over ten years ago, Chiodo and Ruan proved a genus-zero global mirror theorem, relating the Gromov-Witten invariants of the quintic threefold to the corresponding Fan-Jarvis-Ruan-Witten invariants. Moreover, they suggested that the genus-zero relationship quantizes to an all-genus statement. In this talk, I’ll describe recent work with Huai-liang Chang, Shuai Guo, and Jun Li to compute higher-genus FJRW invariants and to verify the quantized global mirror theorem.